1 |
Configuration adjustment potential of the Very High Temperature Reactor prismatic cores with advanced actinide fuelsAmes, David E, II 30 October 2006 (has links)
Minor actinides represent the long-term radiotoxicity of nuclear wastes. As one
of their potential incineration options, partitioning and transmutation in fission reactors
are seriously considered worldwide. If implemented, these technologies could also be a
source of nuclear fuel materials required for sustainability of nuclear energy.
The objective of this research was to evaluate performance characteristics of Very
High Temperature Reactors (VHTRs) and their variations due to configuration
adjustments targeting achievability of spectral variations. The development of realistic
whole-core 3D VHTR models and their benchmarking against experimental data was an
inherent part of the research effort. Although the performance analysis was primarily
focused on prismatic core configurations, 3D pebble-bed core models were also created
and analyzed.
The whole-core 3D models representing the prismatic block and pebble-bed cores
were created for use with the SCALE 5.0 code system. Each of the models required the
Dancoff correction factor to be externally calculated. The code system DANCOFF-MCThe whole-core/system 3D models with multi-heterogeneity treatments were
validated by the benchmark problems. Obtained results are in agreement with the
available High Temperature Test Reactor data. Preliminary analyses of actinide-fueled
VHTR configurations have indicated promising performance characteristics. Utilization
of minor actinides as a fuel component would facilitate development of new fuel cycles
and support sustainability of a fuel source for nuclear energy assuring future operation of
Generation IV nuclear energy systems.
was utilized to perform the Dancoff factor calculations.
|
2 |
Pin-Wise Loading Optimization and Lattice–to-Core Coupling for Isotopic Management in Light Water ReactorsHernandez Noyola, Hermilo 01 December 2010 (has links)
A generalized software capability has been developed for the pin-wise loading optimization of light water reactor (LWR) fuel lattices with the enhanced flexibility of control variables that characterize heterogeneous or blended target pins loaded with non-standard compositions, such as minor actinides (MAs). Furthermore, this study has developed the software coupling to evaluate the performance of optimized lattices outside their reflective boundary conditions and within the realistic three-dimensional core-wide environment of a LWR.
The illustration of the methodologies and software tools developed helps provide a deeper understanding of the behavior of optimized lattices within a full core environment. The practical applications include the evaluation of the recycling (destruction) of “undesirable” minor actinides from spent nuclear fuel such as Am-241 in a thermal reactor environment, as well as the timely study of planting Np-237 (blended NpO2 + UO2) targets in the guide tubes of typical commercial pressurized water reactor (PWR) bundles for the production of Pu-238, a highly “desirable” radioisotope used as a heat source in radioisotope thermoelectric generators (RTGs). Both of these applications creatively stretch the potential utility of existing commercial nuclear reactors into areas historically reserved to research or hypothetical next-generation facilities.
In an optimization sense, control variables include the loadings and placements of materials; U-235, burnable absorbers, and MAs (Am-241 or Np-237), while the objective functions are either the destruction (minimization) of Am-241 or the production (maximization) of Pu-238. The constraints include the standard reactivity and thermal operational margins of a commercial nuclear reactor. Aspects of the optimization, lattice-to-core coupling, and tools herein developed were tested in a concurrent study (Galloway, 2010) in which heterogeneous lattices developed by this study were coupled to three-dimensional boiling water reactor (BWR) core simulations and showed incineration rates of Am-241 targets of around 90%. This study focused primarily upon PWR demonstrations, whereby a benchmarked reference equilibrium core was used as a test bed for MA-spiked lattices and was shown to satisfy standard PWR reactivity and thermal operational margins while exhibiting consistently high destruction rates of Am-241 and Np to Pu conversion rates of approximately 30% for the production of Pu-238.
|
3 |
Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade
plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade
plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor
Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These
results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium
fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an
unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal
(HM) content in the spent fuel, which is intended for direct disposal in a deep geological
repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety
limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the
maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive
Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the
fuel and the graphite moderator in the fuel spheres are varied together. these positive
temperature coefficients were experienced at low temperatures, typically below 700°C. This
was due to the influence of the thermal fission resonance of 241Pu. The safety performance of
the weapons–grade plutonium was the worst. The safety performance of the reactor–grade
plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2
g or 1 g.
In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the
PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium,
the power conversion system and the reactor geometry was proposed in order to solve these
problems. The main elements of these proposals are:
v
1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure.
232Th will then be added in order to restore negative Uniform Temperature Reactivity
Coefficients.
2. The introduction of neutron poisons into the reflectors, in order to suppress the power
density peaks and thus the temperature peaks.
3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a
thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
|
4 |
Deep burn strategy for the optimized incineration of reactor waste plutonium in pebble bed high temperature gas–cooled reactors / Serfontein D.E.Serfontein, Dawid Eduard. January 1900 (has links)
In this thesis advanced fuel cycles for the incineration, i.e. deep–burn, of weapons–grade
plutonium, reactor–grade plutonium from pressurised light water reactors and reactor–grade
plutonium + the associated Minor Actinides in the 400 MWth Pebble Bed Modular Reactor
Demonstration Power Plant was simulated with the VSOP 99/05 diffusion code. These
results were also compared to the standard 9 g/fuel sphere U/Pu 9.6% enriched uranium
fuel cycle. The addition of the Minor Actinides to the reactor–grade plutonium caused an
unacceptable decrease in the burn–up and thus an unacceptable increase in the heavy metal
(HM) content in the spent fuel, which is intended for direct disposal in a deep geological
repository, without chemical reprocessing. All the Pu fuel cycles failed the adopted safety
limits in that either the maximum fuel temperature of 1130°C, during normal operation, or the
maximum power of 4.5 kW/sphere was exceeded. All the Pu cycles also produced positive
Uniform Temperature Reactivity Coefficients, i.e. the coefficient where the temperature of the
fuel and the graphite moderator in the fuel spheres are varied together. these positive
temperature coefficients were experienced at low temperatures, typically below 700°C. This
was due to the influence of the thermal fission resonance of 241Pu. The safety performance of
the weapons–grade plutonium was the worst. The safety performance of the reactor–grade
plutonium also deteriorated when the heavy metal loading was reduced from 3 g/sphere to 2
g or 1 g.
In view of these safety problems, these Pu fuel cycles were judged to be not licensable in the
PBMR DPP–400 reactor. Therefore a redesign of the fuel cycle for reactor–grade plutonium,
the power conversion system and the reactor geometry was proposed in order to solve these
problems. The main elements of these proposals are:
v
1. The use of 3 g reactor–grade plutonium fuel spheres should be the point of departure.
232Th will then be added in order to restore negative Uniform Temperature Reactivity
Coefficients.
2. The introduction of neutron poisons into the reflectors, in order to suppress the power
density peaks and thus the temperature peaks.
3. In order to counter the reduction in burn–up by this introduction of neutron poisons, a
thinning of the central reflector was proposed. / Thesis (PhD (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2012.
|
Page generated in 0.0785 seconds