• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 14
  • 4
  • 2
  • 2
  • Tagged with
  • 100
  • 30
  • 27
  • 23
  • 20
  • 20
  • 20
  • 17
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Understanding Mis- and Dis-Information Consumption in a Polarized Society – Analyzing Selective Evaluation, Subjective Perception of Opinion Leaders and Effects of Heuristic Cues in Post-decision

Ghosh Chowdhury, Satrajit 10 September 2021 (has links)
No description available.
92

MIDDLE EASTERN INTERNATIONAL STUDENTS’ PERCEPTIONS OF INDIVIDUAL MENTAL HEALTH COUNSELING SERVICES ON THEIR RESPECTIVE COLLEGE CAMPUSES IN THE UNITED STATES

Dehghan Manshadi, Fatemeh 27 March 2023 (has links)
No description available.
93

"Jag är så gammal att jag känner om det är något skumt" : En kvalitativt intervjustudie om äldres kunskap och källkritik i sociala medier

Larsson-Auna, Fanny, Nordberg, Zanna January 2022 (has links)
Vårt samhälle blir alltmer digitaliserat och för generationer födda innan internets intågande i hemmen har inte användandet av internet och sociala medier alltid varit en självklarhet. Därför undersöker denna studie hur sociala och personliga aspekter hos svenska personer över 70 år påverkar motivation och attityd i användandet av sociala medier, hur de upplever sin digitala kunskap, hur de upplever att de förhåller sig källkritiskt till information på sociala medier och om de sprider informationen vidare. Studien använde sig av teorier om digitala klyftor, mediekompetens, falsk information och källkritik och genomfördes genom kvalitativa intervjuer. Resultatet visade att sociala aspekter har stor betydelse för deltagarnas motivation och attityd i användandet av sociala medier och att deltagarna upplever brister i sin digitala kunskap, men att få ville vidareutveckla den. De flesta upplever att de tänker källkritiskt kring information som de anser är av viktigt och om den inte bedöms vara viktig kontrolleras den inte. Deltagarna i denna studie anser sig inte sprida information från sociala medier i någon större utsträckning. / Our society is becoming increasingly digital and for generations born before the Internet became an integrated part of peoples home the use of the internet and social media has not always been an obvious part of daily life. Therefore, this study examines how social and personal aspects affect motivation and attitude in the use of social media in Swedish people over the age of 70, how they experience their digital literacy, how source critical they experience themselves to be towards information on social media and whether they are spreading the information to others. The study used theories of digital divide, media literacy, misinformation and source criticism and was conducted through qualitative interviews. The results showed that social aspects are of great importance for the participants' motivation and attitude in the use of social media and that the participants experienced shortcomings in their digital literacy, but few wanted to further develop it. Most of them experience that they think critically about information that they consider to be important and if it is not deemed to be important, it is not checked. The participants in this study do not consider themselves disseminating information from social media to any great extent.
94

Narcissism Predicts Higher Bullshit Transmission and Bullshit Receptivity

Eckhert, Haley 03 August 2023 (has links)
No description available.
95

The Politics of Abortion Care in Ohio

Basmajian, Alyssa January 2024 (has links)
“The Politics of Abortion Care in Ohio” is based on 16-months (November 2021- February 2023) of ethnographic fieldwork and 47 semi-structured interviews conducted before and after the Dobbs Supreme Court decision (2022) overturning the right to abortion in the United States (US). Currently, 14 states have banned abortion and three have bans prior to six weeks of pregnancy. I assert that the criminalization of abortion care is a form of structural violence that leads to direct harm experienced by pregnant people. My dissertation strives to make significant contributions to theories of state-based violence with particular attention to reproductive governance, the anthropology of policy, and the politics of care. First, I develop my concept of reproductive gerrymandering, which names a particular phenomenon wherein the political power of voters who support reproductive healthcare access is suppressed across political party lines. It gives the false impression that the majority of residents in states that predominately elect Republican representatives want government elimination of abortion and related services. I argue that reproductive gerrymandering is a form of bureaucratic violence used to promote anti-abortion agendas, which then causes everyday structural harm to pregnant people. Second, building upon theories of agnotology, or the study of ignorance, I argue that “heartbeat” bans—legislation that advances medical misinformation—manipulates biomedical terms to imbue a particular social meaning to embryos at a very early stage of pregnancy. I explore how biomedical practices, in this case the use of ultrasound technology to detect a “heartbeat,” furthers the cultural production of ignorance around pregnancy and sends a strategic message about the beginnings of life. Third, I demonstrate how constant fluctuations in abortion policy shape temporalities of care in clinic settings. Finally, I reveal three overlooked dimensions of reproductive governance to better understand political control of reproductive bodies: administrative and regulatory, the spread of ignorance, and the political reconfiguring of reproductive time. Ultimately, I argue for the conceptual value of attending to temporalities of structural violence, and specifically the pace with which political violence unfolds.
96

The Struggle Against Misinformation: Evaluating the Performance of Basic vs. Complex Machine Learning Models on Manipulated Data

Valladares Parker, Diego Gabriel January 2024 (has links)
This study investigates the application of machine learning (ML) techniques in detecting fake news, addressing the rapid spread of misinformation across social media platforms. Given the time-consuming nature of manual fact-checking, this research compares the robustness of basic machine learning models, such as Multinominal Naive Bayes classifiers, with complex models like Distil-BERT in identifying fake news. Utilizing datasets including LIAR, ISOT, and GM, this study will evaluate these models based on standard classification metrics both in single domain and cross-domain scenarios, especially when processing linguistically manipulated data. Results indicate that while complex models like Distil-BERT perform better in single-domain classifications, the Baseline models show competitive performance in cross-domain and on the manipulated dataset. However both models struggle with the manipulated dataset, highlighting a critical area for improvement in fake news detection algorithms and methods. In conclusion, the findings suggest that while both basic and complex models have their strength in certain settings, significant advancements are needed to improve against linguistic manipulations, ensuring reliable detection of fake news across varied contexts before consideration of public availability of automated classification.
97

“Kanske att fler barn kan bli räddade ur socialtjänstens klor?” : En kritisk diskursanalys om desinformation och Socialtjänsten på forumet Flashback / “Maybe more children can be saved from the claws of social services?” : A critical discourse analysis on disinformation and the Social Services on the forum Flashback

Hård af Segerstad, William, Ström, Johanna January 2024 (has links)
The spread of disinformation in Sweden is not a new phenomenon and has long been considered a problem for the Swedish Social Services. Though in recent years, misinformation and rumours about the Social Services have increased. The main narratives revolve around the Social Services allegedly kidnapping children of foreign descent without the support of LVU (Care of Young Persons Act) and are commonly referred to as the LVU campaign. Previous research primarily focuses on the portrayal of the Social Services by traditional media, creating a knowledge gap regarding the Social Services and social media. The aim of this study is to examine and increase understanding of discourses about the Social Services among users on the social media platform Flashback. By using a thematic analysis method, we have reduced and sorted the posts found in our Flashback forum of choice. The thematic analysis method enabled the construction of different themes that appeared frequently in the forum. Subsequently, a critical discourse analysis was applied to the material to identify the discourses that emerged in the forum. The critical discourse analysis includes a three-dimensional model and several concepts used to conduct the analysis. The main findings of the study shows that discussions among users on Flashback can involve several different aspects, and users have varying perspectives on the Social Services. This means that the portrayal of the Social Services on Flashback becomes complex as both positive and negative opinions are constantly expressed, along with different problem representations. The Social Services are often described negatively, and when multiple users agree with each other, the negative image of the Social Services becomes a "truth". Positive and negative discourses are also expressed in the Flashback forum, and these are constantly in opposition to each other. In the negative discourses, there is also an expression of fear towards the Social Services and the removal of children, which can be problematic as it may deter people from seeking the care they need.
98

Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom Desinformationshantering

Ahmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI  denna  studie  utforskas  kapaciteterna  och  begränsningarna  hos  avancerade  stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling  av  AI,  där  en  noggrann  uppmärksamhet  kring etiska  aspekter  är  central.  En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
99

FACTS-ON : Fighting Against Counterfeit Truths in Online social Networks : fake news, misinformation and disinformation

Amri, Sabrine 03 1900 (has links)
L'évolution rapide des réseaux sociaux en ligne (RSO) représente un défi significatif dans l'identification et l'atténuation des fausses informations, incluant les fausses nouvelles, la désinformation et la mésinformation. Cette complexité est amplifiée dans les environnements numériques où les informations sont rapidement diffusées, nécessitant des stratégies sophistiquées pour différencier le contenu authentique du faux. L'un des principaux défis dans la détection automatique de fausses informations est leur présentation réaliste, ressemblant souvent de près aux faits vérifiables. Cela pose de considérables défis aux systèmes d'intelligence artificielle (IA), nécessitant des données supplémentaires de sources externes, telles que des vérifications par des tiers, pour discerner efficacement la vérité. Par conséquent, il y a une évolution technologique continue pour contrer la sophistication croissante des fausses informations, mettant au défi et avançant les capacités de l'IA. En réponse à ces défis, ma thèse introduit le cadre FACTS-ON (Fighting Against Counterfeit Truths in Online Social Networks), une approche complète et systématique pour combattre la désinformation dans les RSO. FACTS-ON intègre une série de systèmes avancés, chacun s'appuyant sur les capacités de son prédécesseur pour améliorer la stratégie globale de détection et d'atténuation des fausses informations. Je commence par présenter le cadre FACTS-ON, qui pose les fondements de ma solution, puis je détaille chaque système au sein du cadre : EXMULF (Explainable Multimodal Content-based Fake News Detection) se concentre sur l'analyse du texte et des images dans les contenus en ligne en utilisant des techniques multimodales avancées, couplées à une IA explicable pour fournir des évaluations transparentes et compréhensibles des fausses informations. En s'appuyant sur les bases d'EXMULF, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) ajoute une couche d'analyse du contexte social en prédisant les traits de personnalité des utilisateurs des RSO, améliorant la détection et les stratégies d'intervention précoce contre la désinformation. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) élargit encore le cadre, combinant l'analyse de contenu avec des insights du contexte social et des preuves externes. Il tire parti des données d'organisations de vérification des faits réputées et de comptes officiels, garantissant une approche plus complète et fiable de la détection de la désinformation. La méthodologie sophistiquée d'ExFake évalue non seulement le contenu des publications en ligne, mais prend également en compte le contexte plus large et corrobore les informations avec des sources externes crédibles, offrant ainsi une solution bien arrondie et robuste pour combattre les fausses informations dans les réseaux sociaux en ligne. Complétant le cadre, AFCC (Automated Fact-checkers Consensus and Credibility) traite l'hétérogénéité des évaluations des différentes organisations de vérification des faits. Il standardise ces évaluations et évalue la crédibilité des sources, fournissant une évaluation unifiée et fiable de l'information. Chaque système au sein du cadre FACTS-ON est rigoureusement évalué pour démontrer son efficacité dans la lutte contre la désinformation sur les RSO. Cette thèse détaille le développement, la mise en œuvre et l'évaluation complète de ces systèmes, soulignant leur contribution collective au domaine de la détection des fausses informations. La recherche ne met pas seulement en évidence les capacités actuelles dans la lutte contre la désinformation, mais prépare également le terrain pour de futures avancées dans ce domaine critique d'étude. / The rapid evolution of online social networks (OSN) presents a significant challenge in identifying and mitigating false information, which includes Fake News, Disinformation, and Misinformation. This complexity is amplified in digital environments where information is quickly disseminated, requiring sophisticated strategies to differentiate between genuine and false content. One of the primary challenges in automatically detecting false information is its realistic presentation, often closely resembling verifiable facts. This poses considerable challenges for artificial intelligence (AI) systems, necessitating additional data from external sources, such as third-party verifications, to effectively discern the truth. Consequently, there is a continuous technological evolution to counter the growing sophistication of false information, challenging and advancing the capabilities of AI. In response to these challenges, my dissertation introduces the FACTS-ON framework (Fighting Against Counterfeit Truths in Online Social Networks), a comprehensive and systematic approach to combat false information in OSNs. FACTS-ON integrates a series of advanced systems, each building upon the capabilities of its predecessor to enhance the overall strategy for detecting and mitigating false information. I begin by introducing the FACTS-ON framework, which sets the foundation for my solution, and then detail each system within the framework: EXMULF (Explainable Multimodal Content-based Fake News Detection) focuses on analyzing both text and image in online content using advanced multimodal techniques, coupled with explainable AI to provide transparent and understandable assessments of false information. Building upon EXMULF’s foundation, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) adds a layer of social context analysis by predicting the personality traits of OSN users, enhancing the detection and early intervention strategies against false information. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) further expands the framework, combining content analysis with insights from social context and external evidence. It leverages data from reputable fact-checking organizations and official social accounts, ensuring a more comprehensive and reliable approach to the detection of false information. ExFake's sophisticated methodology not only evaluates the content of online posts but also considers the broader context and corroborates information with external, credible sources, thereby offering a well-rounded and robust solution for combating false information in online social networks. Completing the framework, AFCC (Automated Fact-checkers Consensus and Credibility) addresses the heterogeneity of ratings from various fact-checking organizations. It standardizes these ratings and assesses the credibility of the sources, providing a unified and trustworthy assessment of information. Each system within the FACTS-ON framework is rigorously evaluated to demonstrate its effectiveness in combating false information on OSN. This dissertation details the development, implementation, and comprehensive evaluation of these systems, highlighting their collective contribution to the field of false information detection. The research not only showcases the current capabilities in addressing false information but also sets the stage for future advancements in this critical area of study.
100

What have we learned from the economic impact of the Covid-19 outbreak? Critical analysis of economic factors and recommendations for the future

Marco Franco, Julio Emilio 18 October 2021 (has links)
Tesis por compendio / [ES] El brote de Coronavirus SARS-CoV-2 representó un reto para la economía, la vida social y los servicios sanitarios. Justo cuando más se necesitaba la información para la planificación económica, los servicios de vigilancia y notificación no fueron capaces de ofrecer, a pesar de esfuerzos extraordinarios, datos consistentes, como así reconocieron los propios orga-nismos gubernamentales. Esta tesis incluye tres artículos publicados durante los brotes de COVID-19 y una investi-gación adicional fuera del conjunto de publicaciones. La investigación tiene como objetivo general proporcionar información a través de estimaciones alternativas. Para ello se han utilizado varias metodologías, entre ellas los modelos matemáticos de predicción epidemio-lógica, el Mejor Ajuste de Valores Relacionados (BARV), los análisis de diferentes encues-tas y la metodología bibliométrica, aprovechando u ofreciendo alternativas a los métodos bayesianos más complejos, las simulaciones de Monte Carlo o las cadenas de Markov, aun-que algunos datos obtenidos se apoyan parcialmente en estas metodologías. Cada artículo aborda un tema esencial relacionado con la pandemia COVID-19. La primera publicación se centra en los datos epidemiológicos básicos. Se refiere al primer brote de COVID-19, estimando su duración, incidencia, prevalencia, tasa de fallecimientos sobre infectados (IFR) y tasa de fallecimientos sobre casos (confirmados) (CFR). Como dato destacado de este trabajo, se previó que la seroprevalencia era demasiado baja para que la inmunidad de rebaño desempeñara algún papel. Aunque el valor obtenido fue aproxima-damente un 2% inferior al que demostró posteriormente un estudio poblacional (Instituto Carlos III), la conclusión sobre la inmunidad de rebaño no cambió, y los resultados confir-maron la idoneidad del enfoque. La segunda publicación se centró en las cuestiones legales y las noticias falsas, analizando la reticencia de la población a vacunarse, el impacto de las falsas noticas en estos comporta-mientos, las posibilidades legales de hacer obligatoria la vacuna y las posibles acciones contra los profesionales de la salud que publican noticias falsas. La principal conclusión fue que, aunque se podría encontrar una vía legal para la obligatoriedad de la vacunación, y para la persecución gubernamental de las noticias falsas, la opinión ciudadana parece prefe-rir que la administración no tome la iniciativa, por lo que se recomienda promover y fomen-tar la concienciación ciudadana. La tercera publicación presentó un modelo matemático simplificado para la estimación del coste-efectividad de la vacuna contra la COVID-19. Se actualizan los datos de dos fechas para la estimación de los costes directos para el sistema sanitario debidos a la COVID-19, computando el coste por ciudadano y por Producto Interior Bruto (PIB), así como el coste-efectividad de la vacuna. La estimó razón de coste-efectividad incremental (RCEI) para dos dosis por persona a un coste de 30 euros cada dosis (incluida la administración). Asumien-do al 70% de efectividad y con el 70% de la población vacunada resultó ser de 5.132 euros (4.926 - 5.276) por año de vida ajustado a calidad (AVAC) ganado (a 17 de febrero de 2021). Una cifra que desciende cada día de pandemia activa. Se incluyó una investigación adicional, no incorporada en el conjunto de artículos, centrada en los recursos humanos y la educación. Se analizaron los temas preocupan al personal de primera línea, es decir, a la enfermería, y cómo la pandemia ha afectado a sus publicaciones científicas, como índice de los cambios en el clima laboral que sufre este colectivo. Median-te un estudio bibliométrico comparativo entre las publicaciones de 2019 y 2020, se analizó el cambio de temas y ámbitos como reflejo del impacto del COVID-19 en el personal de enfermería. Así se comprobó que, en los ámbitos de enfermería de atención especializada, y sobre todo e / [CA] El brot de Coronavirus SARS-CoV-2 va representar un repte per a l'economia, la vida soci-al i els serveis sanitaris. Quan més es necessitava la informació per a la planificació econò-mica, malgrat esforços extraordinaris, els serveis de vigilància i notificació no van ser capa-ços d'oferir dades consistents, com així van reconèixer els mateixos organismes governa-mentals. Aquesta tesi inclou tres articles publicats durant els brots de COVID-19 i una investigació addicional fora del conjunt de publicacions. La investigació té com a objectiu general pro-porcionar informació a través d'estimacions alternatives. Per a això s'han utilitzat diverses metodologies, entre elles els models matemàtics de predicció epidemiològica, el Millor Ajust de Valors Relacionats (BARV), les anàlisis de diferents enquestes i la metodologia bibliomètrica, aprofitant o oferint opcions alternatives als mètodes bayesians més comple-xos, les simulacions de Montecarlo o les cadenes de Markov, tot i que algunes dades obtin-gudes es recolzen parcialment en aquestes metodologies. Cada article aborda un tema essen-cial relacionat amb la pandèmia COVID-19. La primera publicació se centra en les dades epidemiològiques bàsiques. Es refereix al pri-mer brot de COVID-19, calculant la seua durada, incidència, prevalença, taxa de defuncions sobre infectats (IFR) i taxa de defuncions sobre casos (confirmats) (CFR). Com a dada des-tacada d'aquest treball, es va preveure que la seroprevalença era massa baixa perquè la im-munitat de ramat exercirà algun paper. Tot i que el valor obtingut va ser aproximadament un 2% inferior al demostrat posteriorment en un estudi poblacional (Institut Carles III), la conclusió sobre la immunitat de ramat no va canviar, i els resultats van confirmar la idoneï-tat de l'enfocament. La segona publicació es va centrar en les qüestions legals i les notícies falses, analitzant la reticència de la població a vacunar-se, l'impacte de les falses notícies en aquests comporta-ments, les possibilitats legals de fer obligatòria la vacuna i les possibles accions contra els professionals de la salut que publiquen notícies falses. La principal conclusió va ser que, tot i que es podria trobar una via legal per l'obligatorietat de la vacunació, i per la persecució governamental de les notícies falses, l'opinió ciutadana sembla preferir que l'administració no prenga la iniciativa, per la qual cosa es recomana promoure i fomentar la conscienciació ciutadana. La tercera publicació va presentar un model matemàtic simplificat per a l'estimació del cost-efectivitat de la vacuna contra la COVID-19. S'actualitzen les dades de dues dates per a l'estimació dels costos directes per al sistema sanitari deguts a la COVID-19, computant el cost per ciutadà i per Producte Interior Brut (PIB), així com el cost-efectivitat de la vacuna. La va estimar raó de cost-efectivitat incremental (RCEI) per dues dosis per persona a un cost de 30 euros cada dosi (inclosa l'administració). Assumint al 70% d'efectivitat i amb el 70% de la població vacunada va resultar ser de 5.132 euros (4.926 - 5.276) per any de vida ajustat a qualitat (AVAQ) (a 17 de febrer de 2021). Una xifra que descendeix cada dia de pandèmia activa. Es va afegir una investigació addicional, no inclosa en el conjunt d'articles, centrada en els recursos humans i l'educació. Es van analitzar els temes que preocupen al personal de pri-mera línia, és a dir, a la infermeria, i com la pandèmia ha afectat les seues publicacions cien-tífiques, com a índex dels canvis en el clima laboral que pateix aquest col·lectiu. Mitjançant un estudi bibliomètric comparatiu entre les publicacions de 2019 i 2020, es va analitzar el canvi de temes i camps com a reflex de l'impacte del COVID-19 en el personal d'infermeria. Així es va comprovar que en els àmbits d'infermeria d'atenció especialitzada, i sobretot en atenció primària, els principals problemes detectat / [EN] The SARS-CoV-2 Coronavirus outbreak has posed a challenge to the economy, social life, and health services. Just when information was most needed for economic planning, moni-toring, and reporting services were unable, despite extraordinary efforts to provide con-sistent data, as government agencies themselves acknowledged. This thesis includes three articles published during the COVID-19 outbreaks and additional research outside the publication set. The overall aim of the research is to provide infor-mation through alternative estimates. Several methodologies have been used, including mathematical models for epidemiological prediction, Best Adjustment of Related Values (BARV), analyses of different surveys and bibliometric methodology, taking advantage of or offering an alternative to, more complex options such as Bayesian methods, Monte Carlo simulations or Markov chains, although some data obtained are partially supported by these methodologies. Each article addresses a key issue related to the COVID-19 pandemic. The first publication focuses on basic epidemiological data. It refers to the first outbreak of COVID-19, estimating its duration, incidence, prevalence, Infection Fatality Rate (IFR) and Case Fatality Rate (CFR). As a highlight of this work, the seroprevalence was anticipated to be too low for herd immunity to play a role. Although the value obtained was approximate-ly 2% lower than that subsequently demonstrated by a population-based study (Instituto Carlos III), the conclusion on herd immunity remained unchanged, and the results con-firmed the appropriateness of the approach. The second publication focuses on legal issues and fake news, analysing reluctance to be vaccinated in the population, the impact of fake news on these behaviours, the legal possi-bilities of making vaccination mandatory, and possible actions against health professionals who publish fake news. The main conclusion was that, although a legal avenue could be found for mandatory vaccination and for governmental prosecution of fake news, public opinion seems to prefer that the authorities do not take the initiative, therefore it recom-mends promoting and encouraging public awareness. The third publication presented a simplified mathematical model for estimating the cost-effectiveness of the COVID-19 vaccine. Data from two dates were obtained for the estimation of the direct costs to the health system due to COVID-19, computing the cost per citizen and per Gross Domestic Product (GDP), as well as the cost-effectiveness of the vaccine. The estimated incremental cost-effectiveness ratio (ICER) was calculated for two doses per person at a cost of 30 euros per dose (including administration). Assuming 70% effectiveness and with 70% of the population vaccinated, it was found to be 5,132 euros (4,926 - 5,276) per quality-adjusted life year (QALY) gained (as of 17 February 2021). The figure decreases with each day of the active pandemic. Additional research not included in the set of articles focuses on human resources and education. It analyses the concerns of frontline staff, i.e., nurses, and how the pandemic has affected their scientific publications, as an index of the changes in the work climate experienced by this group. Through a comparative bibliometric study of publications in 2019 and 2020, the change in topics and fields was analysed, as a reflection of the impact of COVID-19 on nursing staff. It was found that in the fields of specialised care nursing and above all in primary care, the main problems detected are those related to protective measures and psychological factors, while the publications of nursing staff in nursing homes showed an increase in topics related to management and organisation. Finally, some aspects of the implementation of telecommuting and distance learning have been reviewed. Some of the boosts in this field resulting from the pandemic could be very useful and remain in the future, such as the incorporation of telewo / Marco Franco, JE. (2021). What have we learned from the economic impact of the Covid-19 outbreak? Critical analysis of economic factors and recommendations for the future [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/174883 / Compendio

Page generated in 0.0838 seconds