• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bakteriální proteiny v biogenezi mitochondrií jednobuněčných eukaryot. / Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.

Petrů, Markéta January 2019 (has links)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
2

Mitochondrie a jejich role v karcinogenezi / Mitochondria and their role in carcinogenesis

Bajzíková, Martina January 2021 (has links)
(EN) Mitochondria are the principal intracellular organelles responsible for fuel generation; however, they are not just cell powerhouses but are involved in a range of other intracellular functions including cell metabolism, proliferation, death, and immune responses. Loss of function in mitochondria will result in oxidative stress, which is one of the underlying causal factors for a variety of diseases including cancer. Cancer cells can predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic behavior is known as the "Warburg Effect." Linked to this, cancer cell mitochondria can switch between glycolysis and oxidative phosphorylation (OXPHOS) for their energy requirements and survival. The electron transport chain (ETC) function is pivotal for mitochondrial respiration, which is also needed for dihydroorotate dehydrogenase (DHODH) activity that is essential for de novo pyrimidine synthesis. In our research, we have used respiration-deficient cancer cells to challenge the dogma that mitochondria with their DNA are constrained within cells in the body. Our results document that mitochondria move from normal cells within the tumor stroma to tumor cells without mitochondrial DNA (mtDNA), resulting in long-lasting recovery of mitochondrial functions and,...

Page generated in 0.0545 seconds