• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 46
  • 12
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 353
  • 136
  • 97
  • 79
  • 73
  • 42
  • 38
  • 36
  • 34
  • 34
  • 32
  • 30
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Phosphorylation of Filamin A by Cdk1/cyclin B1 Regulates Filamin A Subcellular Localization and is Important for Daughter Cell Separation

Szeto, Sandy January 2014 (has links)
In cell culture, entry into mitosis of many adherent mammalian cells is accompanied by substantial changes in cellular architecture. Flat, spread-out interphase cells detach from the extracellular matrix and become more spherical. These changes in cell shape are mediated by rearrangements in the actin cytoskeleton, a dynamic network of actin filaments that are organized by actin-binding proteins. Filamin A (FLNa) is a 280 kD actin-binding protein that crosslinks actin filaments into parallel bundles or three-dimensional orthogonal networks. We previously identified FLNa as an in vitro substrate of cyclin-dependent kinase 1 (Cdk1), a kinase that regulates entry into mitosis, and hypothesized that Cdk1 phosphorylation of FLNa regulates mitotic actin remodelling. Using mass spectrometry and a p-FLNa antibody, we show that FLNa is phosphorylated in vivo in HeLa cells on multiple Cdk1 sites, including serines 1084, 1459 and 1533. All three sites match the phosphorylation consensus sequence of Cdk1. We further show that p-FLNa is almost fully dephosphorylated by anaphase, consistent with it being a cell cycle-regulated substrate. Using a phospho-specific antibody, we find that p-FLNa has decreased cortical actin localization compared to total FLNa in mitotic cells. To investigate the functional role of mitotic FLNa phosphorylation, we mutated serines 1084, 1459 and 1533 to nonphosphorylatable alanine and expressed this FLNa mutant (FLNa-S1084A, S1459A, S1533A, referred to as “FLNa-AAA GFP”) in FLNa-deficient human M2 melanoma cells. FLNa-AAA GFP-expressing cells have enhanced FLNa-AAA GFP localization at sites of contact between daughter cells and this correlates with defects in cell division and impaired cell migration. Therefore, mitotic delocalization of cortical FLNa is critical for successful cell division and interphase cell behaviour.
202

Origine de la stabilité morphogénétique dans les épithéliums de métazoaires / Origin of morphogenetic stability in metazoan epithelia

Azzag, Karim 07 December 2011 (has links)
La structure polygonale des épithéliums mono-stratifiés exerce une certaine fascination sur les biologistes depuis les observations originales par Robert Hooke en 1665. Cependant, il est difficile d‘expliquer comment la stabilité de la morphogenèse est atteinte, i.e. comment les structures polygonales maintiennent la régularité au sein d'un individu, entre les individus et au sein des phylums. Dans ces travaux, nous introduisons une nouvelle mesure quantitative de la stabilité de la morphogenèse entre individus appelée l'homéostasie topologique. Nous démontrons que les épithéliums non-prolifératifs, formés par un processus d'accrétion, sont plus stables que les épithéliums prolifératifs. Dans le contexte de prolifération, l'homéostasie topologique dépend du rapport apoptose/mitose comme en témoigne le modèle Drosophila où l'homéostasie épithéliale diminue drastiquement quand l'apoptose est inhibée dans les disques imaginaux. Ainsi, l'apoptose agit comme un régulateur positif dans la canalisation de la stabilité de la morphogenèse. En outre, des simulations numériques reproduisant la morphogenèse épithéliale, basées sur la physique des milieux divisés, décrivent comment les mécanismes d'accrétion dans les épithéliums non prolifératifs et l'apoptose dans les épithéliums prolifératifs sont des moyens efficaces pour parvenir à la stabilité morphogénétique. / The polygonal structure of mono-stratified epithelia exerts a unique fascination among biologists since the original observations of Robert Hooke in 1665. However, it is always unclear how the stability of morphogenesis is achieved, i.e., how these polygonal structures maintain regularity among individual, between individuals and among all phyla, and among individuals for each tissue within each species. Here, we introduce a new and quantitative measure of the level of morphologic stability between individuals, referred to as topological homeostasis. We demonstrated that non-proliferative epithelia, formed by an accretion process, are significantly more regularly stabilized than proliferative ones. In proliferative context, topological homeostasis directly depends on the apoptosis/mitosis ratio, as evidenced in the Drosophila imaginal disc model, where topological homeostasis drastically drops down when apoptosis is inhibited. Apoptosis therefore acts as an unexpected positive regulator in the canalization of morphogenetic stability. In addition, numerical simulations of epithelial morphogenesis, based on the physics of devided media, described how accretion mechanisms in non-proliferative epithelia, and, apoptosis in proliferative ones, are efficient means to achieve morphogenetic stability.
203

Rôles de la poly (ADP-ribose) polymérase-3 (PARP-3) dans la réponse cellulaire aux dommages dans l'ADN et la progression mitotique / Roles of poly(ADP-ribose) polymerase-3 (PARP-3) in cellular response to DNA damage and in mitotic progression

Boehler, Christian 20 September 2012 (has links)
La Poly(ADP-ribosyl)ation est une modification post-traductionnelle des protéines catalysée par les poly(ADP-ribose) polymérases (PARPs), une famille de 17 membres. Nous avons débuté la caractérisation fonctionnelle d’un nouveau membre de cette famille : la Poly(ADP-Ribose) Polymérase-3 (PARP-3). Cette protéine était très peu étudiée. Le gène humain Parp3 permet l’expression de deux isoformes. Tandis que l’isoforme longue a été identifiée comme un composant centrosomal, l’isoforme courte est accumulée dans le noyau. En outre, seule l’isoforme courte est exprimée chez la souris. Pour étudier les conséquences fonctionnelles de l’absence de PARP-3 dans les cellules humaines, nous avons généré un modèle cellulaire de fibroblastes de poumons humains (MRC5) déplété en PARP-3 par la méthode de l’interférence ARN. Nos travaux ont permis d’identifier PARP-3 comme un nouvel acteur spécifique de la réponse cellulaire aux cassures double brin de l’ADN (DSB). Nous avons également entrepris une recherche de partenaires de PARP-3 par spectrométrie de masse. Nous avons identifié une interaction de PARP-3 avec la protéine NuMA, un régulateur essentiel de la division mitotique. Nos travaux ont mis en évidence l’existence d’un complexe protéique composé de PARP-3, NuMA et Tankyrase 1 (PARP-5a), impliquée dans les mécanismes mitotiques. PARP-3 a un rôle charnière dans la régulation de ce complexe qui joue un rôle fondamental dans la progression mitotique au travers de la maintenance du fuseau mitotique et de la résolution des télomères. Les rôles de PARP-3 dans les mécanismes de réparation des DSB ainsi que dans la progression mitotique en font une cible prometteuse en thérapie du cancer. / Poly(ADP-ribosyl)ation is a post-translational modification of proteins mediated by poly(ADP-ribose) polymerases (PARPs), a family of 17 members. We started the functional characterization of a new member of this family : the Poly(ADP-Ribose) Polymerase-3 (PARP-3). This protein was poorly studied. The human Parp3 gene displays two splicing variants giving rise to two proteins. Whereas the full length hPARP-3 has been identified as a core component of the centrosome throughout the cell cycle, the shorter splice variant accumulates within the nucleus. Of note, only the shorter nuclear variant is found in mice. We generated PARP-3 depletion in human lung cell line (MRC5) using RNA interference to analyse functional consequences of PARP-3 absence. We identified PARP-3 as a new specific actor of Double-Strand Breaks (DSB) repair mechanism. We also identified a new protein partner of PARP-3, NuMA, which is an essential regulator of mitotic division. These cells also showed problems in mitosis entry, in mitotic spindle formation, an increased mitosis duration and chromosomes aberrations. Performing protein interaction studies and using biochemical approaches, we highlighted a protein complex composed of PARP-3, NuMA and Tankyrase 1 (PARP-5a), involved in mitotic mechanisms. PARP-3 has a key role in the regulation of this complex. It plays essential role in mitotic progression and in mitotic spindle integrity maintenance and in telomere stability. The roles of PARP-3 in both DSB repair mechanisms and in mitotic progression indicate PARP-3 as a possible promising therapeutic target in cancer therapy.
204

Rôle de l'histone variante H2A.Z dans la prolifération et la différenciation des kératinocytes de la peau / Role of the histone variant H2A.Z in proliferation and in differentiation of epidermal keratinocytes

Ramos, Lorrie 19 September 2019 (has links)
L’histone variante H2A.Z, histone de la famille H2A est enrichie dans certaines régions non transcrites de la chromatine, telles que la chromatine péricentromérique, centromérique et télomérique. Elle existe sous la forme de deux isoformes, H2A.Z-1 et H2A.Z-2, qui diffèrent par seulement 3 acides aminés et sont codés par deux gènes distincts, H2afz et H2afv. L’histone H2A.Z apparait impliquée dans divers évènements cellulaires tels que la transcription, la réparation de l’ADN ainsi que la prolifération et la différenciation cellulaire. La fonction de H2A.Z a été, jusqu’ici, analysée surtout grâce à la culture cellulaire in-vitro. Peu d’informations sont disponibles concernant le rôle de H2A.Z in-vivo dans différents organes, reflétant le manque de modèles animaux permettant l’invalidation génique de H2A.Z. Nous avons créé un modèle de souris transgénique permettant de réaliser in-vivo le double knock-out conditionnel (KI/cKO) des gènes H2afz et H2afv de manière tissu-spécifique dans les kératinocytes de la peau. Ce modèle d’étude in-vivo est unique car le seul à ce jour permettant d’éliminer complètement l’expression de H2A.Z. L’histone variante est physiologiquement présente dans toutes les cellules wild-type. Si les deux gènes codant pour H2A.Z sont délétés, la concentration de l’histone diminue au fur et à mesure des mitoses successives et finit par disparaître.L’épiderme en constante prolifération (tissu mitotique) mais aussi en constante différenciation (tissu post-mitotique), ainsi que le follicule pileux où ces deux processus intervenent de manière cyclique lors de la formation du poil, constituent un excellent modèle afin de disséquer le rôle spécifique de H2A.Z dans les processus de prolifération et de différenciation.L’induction par le tamoxifène du transgène K14CreERT2 invalidant les gènes H2A.Z (H2afz et H2afv) dans les kératinocytes, a tout d’abord été réalisée chez la souris adulte âgée de 6-8 mois. Elle entraine progressivement la perte totale de l’histone variante H2A.Z dans les cellules d’amplification transitoire (TA) qui se multiplient activement : au niveau du follicule pileux en phase de croissance (anagène) et au niveau des cellules situées de place en place au niveau de l’assise basale de l’épiderme. Le blocage en phase G2/M de ces cellules, perturbe l’homéostasie de la peau et appelle en retour une migration des cellules souches du follicule pileux vers l’épiderme, entrainant un épaississement de l’épiderme et une alopécie dans la région ventrale thoracique.Lors de la mise en place de la peau embryonnaire la délétion des deux gènes H2afz et H2afv, par l’induction du transgène K14CreERT2 suite à l’injection de tamoxifène ou l’utilisation du transgène K5Cre dont l’activité est constitutive, entraine la perte progressive de l’histone H2A.Z dans toutes les cellules épidermiques et les cellules des bourgeons pileux, qui toutes ont un fort indice de prolifération. La perte de H2A.Z entrainant le blocage des cellules en phase G2/M, ces cellules se différencient et s’accumulent dans la couche cornée.En conclusion, les différents phénotypes développés après le knock-out de H2A.Z dans les kératinocytes chez l’adulte ainsi qu’au cours de l’embryogénèse de la peau, nous ont permis de montrer l’implication de H2A.Z dans la progression de la mitose, et par la même directement son implication dans la régulation de l’homéostasie de l’épiderme. / Histone variant H2A.Z replaces the canonical histone H2A and is particularly enriched at non-transcribed chromatin regions as pericentromeric, centromeric and telomeric. Histone variant H2A.Z exists in two isoforms H2A.Z-1 and H2A.Z-2 coded by 2 distinct genes, H2afz and H2afv, that differ only by 3 amino acids. H2A.Z seems to be involved in several cellular events as transcription, DNA repair as well as proliferation and cellular differentiation. The function of H2A.Z has been, until now, mostly studied by the in-vitro cell culture. Few data are available concerning the role of H2A.Z in-vivo, regarding different organs, reflecting the lack of animal models to follow the genetic invalidation of H2A.Z. Histone variant H2A.Z is present in wild-type cells and when the 2 genes coding for H2A.Z are deleted, its concentration decreases progressively with succeeding mitosis until it disappeared.We have created a new and unique transgenic mouse model enabling to achieve, in-vivo, a double conditional knock-out of H2afz and H2afv genes, in a specific tissue, the skin epidermis. Constantly proliferating (mitotic tissue) and differentiating (post-mitotic tissue), the epidermis and hair follicles are excellent models to address the role of H2A.Z in cell proliferation and differentiation.In adult 6-8 months mice, the induction of the transgene K14CreERT2 by tamoxifen invalidates H2A.Z genes (H2afz and H2afv) and leads to the progressive loss of H2A.Z in transient amplifying cells (TA) that actively proliferate: in growing hair follicles (anagen) and in epidermal basal layer. The blocking of cells in G2/M phase, affects skin homeostasis calling in return the migration of stem cells from the hair follicle and epidermis, resulting in further epidermis thickening and alopecia of ventral thoracic regions.During skin embryogenesis, the deletion of both H2A.Z genes, activating K14CreERT2 transgene by tamoxifen or by using the constitutively activated K5Cre transgene, leads to a progressive loss of histone variant H2A.Z in all epidermal cells and hair bud cells, which both have a high proliferation index. The loss of H2A.Z results in cell block in G2/M phase, leads to cell differentiation and finally a build-up of dead skin cells in corneum layer.To conclude skin phenotypes obtained H2A.Z knock-out in the adult or during skin embryogenesis, show that H2A.Z plays an essential role in mitosis and appears directly involved in the regulation of epidermis homeostasis.
205

Etude du rôle et de la régulation de BubR1 dans la ségrégation des chromosomes acentriques / Role and regulation of BubR1 during acentric chromosomes segregation

Derive, Nicolas 05 December 2014 (has links)
La transmission correcte du matériel génétique au cours de la mitose requiert l’attachement correct des chromosomes aux microtubules du fuseau mitotique. Les centromères au niveau des chromosomes servent de site d’assemblage aux kinétochores, interfaces multiprotéiques permettant la liaison des microtubules. Cependant, nous avons récemment mis en évidence chez la drosophile un mécanisme par lequel les fragments acentriques ségrégent normalement. Celui-­‐ci fonctionne grâce à un « tether », un filament d’ADN, qui relie les fragments acentriques à leurs partenaires centriques. L’intégrité du tether dépend de la fonction de BubR1, qui s’accumule au tether pendant de la mitose. BubR1 est une protéine clé dans le point de contrôle d’assemblage du fuseau mitotique, ou SAC (Spindle Assembly Checkpoint), qui contrôle l’attachement correct des kinétochores aux microtubules et inhibe l’entrée en anaphase. Nous avons voulu déterminer comment BubR1 est recrutée au tether, et nous avons montré que ce recrutement est dépendant du Bub3 Binding Domain de BubR1 et plus précisément de l’acide aminé E481 dans ce domaine. L’interaction Bub3-­‐BubR1 par l’intermédiaire de ce domaine est nécessaire à la localisation du complexe au tether. Nous avons également montré que BubR1 recrute à son tour Fzy par l’intermédiaire de son domaine KEN.Nous proposons un modèle dans lequel le recrutement successif de Bub3-­‐BubR1 et Fzy au niveau des chromosomes endommagés est nécessaire à leur bonne ségrégation en mitose. / Accurate transmission of genome during mitosis requires proper chromosomes attachment to microtubules of the mitotic spindle. Centromeres of chromosomes are assembly sites for kinetochores, multiproteic interfaces for microtubule binding. However, we recently discovered in Drosophila a mechanism that permits proper acentric chromosomes segregation. This mechanism works through a DNA « tether » that binds together acentric chromosomes to their centric counterparts. Tether integrity depends on BubR1 function, which accumulates on the tether during mitosis. BubR1 is a key protein in the Spindle Assembly Checkpoint (SAC), which monitors proper kinetochore-­‐microtubule attachment, and inhibits anaphase onset until all kinetochores are properly bound to microtubules. We wanted to determine how BubR1 is recruted to the tether, and we showed that this recruitment is dependant on the Bub3-­‐Binding Domain of BubR1, and more precisely the E481 amino acid. Bub3-­‐BubR1 interaction mediated by this domain is necessary for complex localisation on the tether. We also discovered that BubR1 then recruits Fzy via its KEN domain. We propose a model where successive recruiting of Bub3-­‐BubR1 and Fzy at the broken chromosome level is mandatory to their proper segregation in mitosis.
206

Mechanism of spindle assembly in Schizosaccharomyces pombe-: The role of microtubule pivoting in spindle assembly

Winters, Lora 30 September 2016 (has links)
At the onset of cell division microtubules growing from spindle pole bodies (SPB) interact with each other to form the mitotic spindle enabling proper chromosome positioning and segregation. However, the exact mechanism of microtubule dynamics and microtubule associated proteins (MAPs) underlying spindle assembly is still not well understood. We developed an in vivo method to observe spindle assembly in the fission yeast Schizosaccharomyces pombe by inducing depolymerization of already formed and grown spindles by subjecting the cells to low temperatures, followed by subsequent repolymerization at a permissive temperature. We observed that microtubules pivot, i.e., perform angular movement around the SPB in a random manner, exploring the intranuclear space. Eventually microtubules extending from opposite SPBs come into contact and establish an antiparallel connection thus reassembling the spindle. Mutant approaches revealed that deletion of ase1 and klp5 did not prevent spindle reassembly, however introduced aberrations during the spindle formation. Amazingly, cut7p showed direct colocalization with microtubule overlap during spindle reassembly. Abrogation of cut7p led to inability to form a functional spindle. Thus, cut7p is the main regulator of spindle formation in fission yeast. None of the mutant strains affected microtubule pivoting, confirming that microtubule pivoting is a random movement unrelated to MAPs.
207

A Role for Intraflagellar Transport Proteins in Mitosis: A Dissertation

Bright, Alison R. 18 June 2013 (has links)
Disruption of cilia proteins results in a range of disorders called ciliopathies. However, the mechanism by which cilia dysfunction contributes to disease is not well understood. Intraflagellar transport (IFT) proteins are required for ciliogenesis. They carry ciliary cargo along the microtubule axoneme while riding microtubule motors. Interestingly, IFT proteins localize to spindle poles in non-ciliated, mitotic cells, suggesting a mitotic function for IFT proteins. Based on their role in cilia, we hypothesized that IFT proteins regulate microtubule-based transport during mitotic spindle assembly. Biochemical investigation revealed that in mitotic cells IFT88, IFT57, IFT52, and IFT20 interact with dynein1, a microtubule motor required for spindle pole maturation. Furthermore, IFT88 co-localizes with dynein1 and its mitotic cargo during spindle assembly, suggesting a role for IFT88 in regulating dynein-mediated transport to spindle poles. Based on these results we analyzed spindle poles after IFT protein depletion and found that IFT88 depletion disrupted EB1, γ-tubulin, and astral microtubule arrays at spindle poles. Unlike IFT88, depletion of IFT57, IFT52, or IFT20 did not disrupt spindle poles. Strikingly, the simultaneous depletion of IFT88 and IFT20 rescued the spindle pole disruption caused by IFT88 depletion alone, suggesting a model in which IFT88 negatively regulates IFT20, and IFT20 negatively regulates microtubulebased transport during mitosis. Our work demonstrates for the first time that IFT proteins function with dynein1 in mitosis, and it also raises the important possibility that mitotic defects caused by IFT protein disruption could contribute to the phenotypes associated with ciliopathies.
208

Mitotic Roles for Cytoplasmic Dynein and Implications for Brain Developmental Disease: a Dissertation

Faulkner, Nicole E. 27 March 2001 (has links)
Cytoplasmic dynein has been implicated in a wide range of functions. Originally characterized as being responsible for retrograde axonal transport, its has also been shown to traffic vesicular organelles (Golgi, endosome and lysosome distribution), transport viral particles to the nucleus, and participate in microtubule organization. During mitosis, cytoplasmic dynein is thought to function in spindle pole focusing and prometaphase kinetochore capture. This thesis explores the mitotic roles of cytoplasmic dynein. The first chapter addresses the role of cytoplasmic dynein in kinetochore activity. Using immunofluoresence microscopy, a number of motors and related proteins were observed at the primary, but not secondary, constrictions of prometaphase multicentric chromosomes. The proteins assessed included the cytoplasmic dynein intermediate chains, three components of the dynactin complex (dynamitin, Arp1, and p150Glued), the kinesin related proteins CENP-E and MCAK, and the proposed structural and checkpoint proteins CENP-F, HZW10, and MAD2. The differential localization of these proteins offered new insight into the assembly and composition of both active and inactive centromeres, and provided a molecular basis for the apparent inactivity of the latter during chromosome segregation. The second chapter characterizes LIS1, a protein that is defective in the developmental brain disease type1 lissencephaly. Mutations in the LIS1 gene cause gross histological disorganization of the developing cerebral cortex resulting in a nearly smooth brain surface. Because genetic evidence from lower eukaryotes suggested that LIS1 acted within the cytoplasmic dynein pathway, it was of interest to analyze LIS1 in terms of cytoplasmic dynein function. LIS1 was found to coimmunoprecipitate with cytoplasmic dynein and its companion complex dynactin. During mitosis LIS1 localized to the prometaphase kinetochore, spindle microtubules and the cell cortex, known sites for cytoplasmic dynein binding. Interference with endogenous LIS1 in cultured mammalian cells displaced dynein localization and disrupted mitotic progression. LIS1 was concluded to participate in cytoplasmic dynein functions, but only during mitosis. Data presented in the final chapter further characterizes LIS1's interactions with microtubules, cytoplasmic dynein and the mammalian homologue of NUDC. LIS1 was not found to co-fractionate with microtubules, nor did overexpression of LIS1 cause visible effects on microtubule organization or dynamics. GFP-LIS1 was shown to ride along the plus ends of growing microtubules. Though LIS1 was not found to have a direct effect on microtubules, it may regulate dynein's microtubule binding activity. LIS1 was found to co-immunoprecipitate with a co-overexpressed cytoplasmic dynein subunit substantiating the existence of a dynein LIS1 supercomplex. Furthermore, association of these proteins increased markedly in mitotically blocked samples. LIS1's regulation of cytoplasmic dynein may change the capacity of the motor to efficiently manipulate its mitotic cargoes, dramatically effecting the timing of cell division. This disruption has implications for the fundamental role of cytoplasmic dynein during early embryonic development.
209

The nuclear pore protein Nup153: Dissecting its role in nuclear envelope and nuclear pore complex architecture and its interaction with the spindle assembly checkpoint protein Mad1

Mossaid, Ikram 04 August 2016 (has links) (PDF)
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and composed of proteins called nucleoporins. NPCs as such control the bidirectional traffic of proteins and RNAs between the nucleus and the cytoplasm in eukaryotic cells whereas individual nucleoporins were found to be implicated in other cellular processes such as, cell division, kinetochore assembly, gene expression and cell migration. A prime example for nucleoporin functional versatility can be seen in Nup153. Nup153 is since its discovery known to be a central player in nucleocytoplasmic transport, but additionally participates directly or indirectly, for example, in gene expression and cell cycle control. In this context, it was previously shown that altered levels of Nup153 led to mitotic abnormalities, particularly in cytokinesis and in the spindle assembly checkpoint (SAC). The SAC promotes accurate chromosome separation to ensure the faithful segregation of genetic material to daughter cells. Nup153 was found to interact with the SAC protein Mad1. In the present study, we have further dissected the interaction between Nup153 and Mad1 and investigated the function of the Nup153-Mad1 complex in human cells. By using the high resolution imaging technique “in situ proximity ligation assay”, we found that Nup153 and Mad1 interact with each other exclusively in the presence of a NE, from late mitosis to prophase. By in vitro binding assays, we have confirmed the direct interaction between Nup153 and Mad1 and furthermore identified two independent Nup153-binding sites in Mad1. We have also provided some evidence that Nup153 interacts also with SUMO-modified Mad1.It was previously shown that depletion of Nup153 had no obvious effect on Mad1 and SAC activity. In the present study, we have shown by time-lapse imaging microscopy that the depletion of Mad1 led to a delayed recruitment of Nup153 at the reforming NE during anaphase in living cells, which was often accompanied by a prolongation of anaphase. Furthermore, Mad1 depletion led to alterations in the NE architecture, which were characterized by a change of the membrane curvature at the NPC-NE interface. This was followed by an expansion of the spacing between the inner and outer membranes as seen by electron microscopic and three-dimensional structured illumination investigations. This suggests an implication of Mad1 in a mechanism related to the NE reformation and stability independent of the SAC. Mad1 depletion also resulted in redistribution of the ER network and mitochondria throughout the cell as seen by fluorescence microscopy. Nup153 depletion coincided with the NE abnormalities and alteration of these organelles similar to that seen in Mad1-depleted cells. Further, by fluorescence microscopy, we have shown that Nup153 depletion, but not of Mad1, partially affected the localization of the cytoplasmic nucleoporins in human and in mouse cells and thus the NPC integrity. In conclusion, altogether, our results suggest that Nup153 is essential for NE and NPC integrity. Nup153 has likely separable roles in this context: one in post-mitotic NE reformation with Mad1 and one in interphase in NPC assembly. Nup153-Mad1 complex has a function independent of the spindle checkpoint, but important for the establishment of an intact NE architecture. / Les pores nucléaires sont des structures enchâssées dans l’enveloppe nucléaire et composées de protéines appelées les nucléoporines. Ces pores nucléaires contrôlent le trafic bidirectionnel des protéines et des ARNs entre le noyau et le cytoplasme dans les cellules eucaryotes tandis que les nucléoporines individuelles sont également impliquées dans d’autres processus cellulaires tels que la division cellulaire, l’assemblage des kinétochores, l’expression génétique et la migration cellulaire. Un exemple primordial de la versatilité fonctionnelle des nucléoporines peut être observé à travers Nup153. Depuis sa découverte, Nup153 est connue pour être un élément clé dans le transport nucléo-cytoplasmique, mais il a également été démontré qu’elle participait directement ou indirectement à l’expression génétique et au contrôle du cycle cellulaire. Dans ce contexte, nous avons montrés précédemment que des niveaux altérés de Nup153 menaient à des anomalies mitotiques, particulièrement en cytokinèse et dans le point de contrôle de l’assemblage du fuseau mitotique (SAC). Le SAC assure la ségrégation correcte du matériel génétique entre les cellules filles. Il a été montré que Nup153 interagit avec la protéine du SAC Mad1. Dans cette étude, nous avons utilisé une technique d’imagerie de haute résolution, « in situ proximity ligation assay » pour disséquer davantage l’interaction entre Nup153 et Mad1 dans les cellules humaines. Nous avons montré que ces deux protéines interagissent exclusivement au niveau de l’enveloppe nucléaire, depuis les dernières phases de la mitose jusqu’à la prophase. Par des expériences d’interaction in vitro, nous avons également identifiés sur Mad1 deux sites de liaison indépendants pour Nup153. Nous avons également fourni des indications que Nup153 interagit aussi avec une forme SUMOylée de Mad1. La déplétion de Mad1 menait à un recrutement tardif de Nup153 au niveau de l’enveloppe nucléaire en cours de reformation en anaphase dans les cellules vivantes et à des altérations de l’architecture de l’enveloppe nucléaire, caractérisées par un changement de la courbure membranaire au niveau de l’interface pore nucléaire-enveloppe nucléaire. Suite à cela, une expansion de l’espace entre les membranes nucléaires internes et externes a été observée par microscopie électronique. Ceci suggère une implication de Mad1 dans un mécanisme lié à la stabilité de l’enveloppe nucléaire indépendant du SAC. La déplétion de Mad1 résultait également en une redistribution du RE et des mitochondries à travers la cellule. La déplétion de Nup153 coïncidait avec des anomalies similaires au niveau de l’enveloppe nucléaire et des organelles. De plus, la déplétion de Nup153 affectait partiellement la localisation des nucléoporines cytoplasmiques, contrairement à la déplétion de Mad1. Ensemble, nos résultats suggèrent que Nup153 est essentielle pour l’intégrité des pores nucléaires et de l’enveloppe nucléaire. Nup153 semble avoir deux rôles, un au niveau de la formation de l’enveloppe nucléaire en fin de mitose, en complexe avec Mad1 et un autre rôle au niveau de l’assemblage des pores nucléaires. Le complexe Nup153-Mad1 a une fonction indépendante du SAC, mais importante pour l’établissement d’une enveloppe nucléaire intacte. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
210

The centrin-binding protein Sfi1 : functions in fission yeast and human / Fonctions de la protéine centrosomale Sfi1 chez la levure et l'homme

Bouhlel Bougdhira, Imen 07 December 2017 (has links)
Le centrosome est le centre organisateur des microtubules dans les cellules animales, il nucléé les microtubules interphasiques ainsi que le fuseau mitotique. Les centrosomes sont produits par duplication, mécanisme rigoureusement régulé au cours du cycle cellulaire. En effet, un centrosome comporte deux centrioles qui se dupliquent une fois par cycle cellulaire. Des erreurs de duplication conduisant à plus de deux centrosomes induisent la formation de fuseaux multipolaires et provoquent des défauts de ségrégation des chromosomes. Chez la levure Schizosaccharomyces pombe, un organisme modèle pour l’étude de la division cellulaire, les homologues des centrosomes sont les SPBs (pour Spindle Pole Body). Une structure annexe spécifique liée aux SPBs est appelée demi-pont (quand les SPBs ne sont pas dupliqués) puis pont (quand elle relie les deux SPBs dupliqués). Les deux principaux composants du pont chez la levure S. pombe sont Cdc31 et Sfi1. Sfi1 est une protéine linéaire formée de répétitions en hélice α formant des sites de liaison pour la Centrine/Cdc31. Sfi1 s’assemble en réseau de molécules parallèles interagissant avec le SPB via leur domaine N-terminal. Lors de la première partie de ma thèse, j’ai démontré que Sfi1 est requis pour la duplication et la séparation des deux SPBs. Dans la première partie de ma thèse, je me suis intéressée aux fonctions de Sfi1 chez la levure. Cette étude a permis de démontrer que Sfi1 est un composant du demi-pont et qu’il est essentiel pour la duplication des SPBs et l’assemblage d’un fuseau bipolaire. De plus, nous avons déterminé que le pont est dupliqué en fin de mitose. Enfin, nous avons aussi montré que la déstabilisation du pont menant à sa rupture en mitose, dépend de la phosphorylation de Cdc31 par la kinase mitotique Cdk1. Lors de la seconde partie de ma thèse, je me suis intéressée au complexe Sfi1/Centrine dans les cellules humaines. J’ai confirmé que Sfi1 est localisée aux centrioles. De plus, j’ai montré que la déplétion de Sfi1 dans les cellules RPE1, conduit à une perte de localisation de la Centrine, suggérant soit un défaut de recrutement, soit une déstabilisation. De plus, en absence de Sfi1, les cellules RPE1 ne sont plus capables de former de cil primaire. Ce résultat suggère que Sfi1 et la Centrine sont requis pour la ciliogénèse. Enfin, j’ai aussi démontré que la déplétion deSfi1 induit un arrêt de cycle cellulaire dans les cellules non tumorales RPE1. Dans les cellules cancéreuses, HeLa, le cycle n’est pas arrêté mais j’ai pu observer une prolongation du temps de mitose. En conclusion mes travaux montrent que bien que la fonction de Sfi1/Centrin ne soit pas conservée, le complexe reste essentiel pour l’intégrité structurale et fonctionnelle du centrosome. / The centrosome is the main microtubule organizing center. It nucleates and organizes interphase microtubule and contributes to the assembly of the bipolar mitotic spindle. To do so, the centrosome, present in one copy at the beginning of the cell cycle, duplicates to produce a second copy. The duplication process is tightly controlled and regulated since centrosome over-duplication can lead to multipolar mitotic spindles and promote genome instability and tumorigenesis. The duplication of the yeast centrosome, the SPB (Spindle pole body), begins with the duplication of the half bridge. This appendage is composed of Sfi1/Cdc31 complex organized in a parallel array attached to the core SPB. SPB duplication relies on the assembly of a second array of Sfi1/Cdc31, anti-parallel to the first one, creating thereby an assembly site for the new SPB. Therefore Sfi1 is essential for SPB duplication and our work defined the timing of half-bridge duplication and some of the regulatory mechanisms that favor bridge splitting to release duplicated centrosomes and allow spindle assembly at mitotic onset. Sfi1 and Cdc31/Centrins are conserved in human cells where the centrosome is composed of two centrioles surrounded by the pericentriolar material. Centrins are concentrated in the distal end of centrioles. Sfi1 has also been localized to centrioles, but its function remained unknown. Thus, we started investigating Sfi1 function in human cells. We found that Sfi1 depletion leads to a decrease in Centrin recruitment to the centrioles. It also leads to a cell cycle arrest in G1 in RPE1 cells, an event previously observed in presence of defects in centriole biogenesis. In HeLa cells where the cell cycle is not affected, Sfi1 depletion leads to a mitotic delay. Moreover, Sfi1 depletion leads to cilium assembly. To conclude, these results altogether point towards a role of human Sfi1 in centriole biogenesis.

Page generated in 0.0494 seconds