1 |
Συμβολή στη στατιστική συμπερασματολογία για τις κατανομές γάμα και αντίστροφη κανονική με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης / Contribution to statistical inference for the Gamma distributions and the Inverse Gaussian distributions using the empirical moment generating functionΚαλλιώρας, Αθανάσιος Γ. 01 September 2008 (has links)
Το αντικείμενο της παρούσας διατριβής είναι η διερεύνηση μεθόδων στατιστικής συμπερασματολογίας για την προσαρμογή και έλεγχο της κατανομής γάμα και της αντίστροφης κανονικής (inverse Gaussian) κατανομής σε δεδομένα με θετική λοξότητα. Τα πρότυπα αυτά χρησιμοποιούνται ευρέως στην ανάλυση αξιοπιστίας και ελέγχου μακροβιότητας καθώς και σε άλλες εφαρμογές.
Αρχικά γίνεται μια περιγραφή εναλλακτικών μεθόδων στατιστικής συμπερασματολογίας για τις διπαραμετρικές και τις τριπαραμετρικές οικογένειες κατανομών γάμα και αντίστροφης κανονικής. Στη συνέχεια διερευνάται η χρήση μεθόδων στατιστικής συμπερασματολογίας για την εκτίμηση των παραμέτρων της διπαραμετρικής γάμα κατανομής με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης. Μέθοδοι εκτιμητικής, όπως είναι η μέθοδος των μικτών ροπών και των γενικευμένων ελαχίστων τετραγώνων, εφαρμόζονται και συγκρίνονται με την μέθοδο της μέγιστης πιθανοφάνειας μέσω πειραμάτων προσομοίωσης Monte Carlo. Επίσης, διερευνώνται έλεγχοι καλής προσαρμογής για τη διπαραμετρική γάμα κατανομή. Οι έλεγχοι αυτοί περιλαμβάνουν τους κλασικούς ελέγχους και έναν έλεγχο που χρησιμοποιεί την εμπειρική ροπογεννήτρια συνάρτηση. Με χρήση πειραμάτων προσομοίωσης Monte Carlo, γίνεται σύγκριση των ελέγχων ως προς το πραγματικό επίπεδο σημαντικότητας και την ισχύ έναντι άλλων λοξών προς τα δεξιά κατανομών. Στη συνέχεια εφαρμόζονται έλεγχοι καλής προσαρμογής γάμα κατανομών σε πραγματικά δεδομένα, τα οποία έχουν αναλυθεί νωρίτερα από άλλους ερευνητές. Για τον έλεγχο της τριπαραμετρικής γάμα κατανομής εφαρμόζεται μόνο ο έλεγχος με χρήση της εμπειρικής ροπογεννήτριας συνάρτησης, αφού δεν είναι γνωστοί κλασικοί έλεγχοι που χρησιμοποιούν την εμπειρική συνάρτηση κατανομής.
Τέλος, γίνεται εκτίμηση ποσοστιαίων σημείων της αντίστροφης κανονικής κατανομής. Αρχικά, εκτιμώνται ποσοστιαία σημεία για την τριπαραμετρική κατανομή και στη συνέχεια εφαρμόζονται δύο μέθοδοι υπολογισμού ποσοστιαίων σημείων για την περίπτωση της διπαραμετρικής κατανομής. Η εκτίμηση των ποσοστιαίων σημείων σε κάθε οικογένεια κατανομών χρησιμοποιεί δύο μεθόδους ενδιάμεσης εκτίμησης των παραμέτρων της κατανομής. Οι μέθοδοι συγκρίνονται ως προς το μέσο τετραγωνικό σφάλμα και τη σχετική μεροληψία με τη βοήθεια πειραμάτων προσομοίωσης. / The subject of the present dissertation is the investigation of procedures of statistical inference for fitting and testing the gamma distribution and inverse Gaussian distribution, with data having positive skewness. These distributions are used widely in reliability analysis and lifetime models as well as in other applications.
In the beginning, we describe alternative methods of statistical inference for the two and three-parameter families of gamma and inverse Gaussian distributions. Then, we examine methods of statistical inference in order to estimate the parameters of the two-parameter gamma distribution using the empirical moment generating function. Estimation procedures, like the method of mixed moments and the method of generalized least squares, are applied and compared with the method of maximum likelihood through Monte Carlo simulations. Also, we investigate goodness of fit tests for the two-parameter gamma distribution. These tests include the classical tests and a test based on the empirical moment generating function. Using Monte Carlo simulations, we compare the actual level of the tests and the power of the tests against skewed to the right distributions. We apply goodness of fit tests of gamma distributions to real life data, which have been examined earlier by other researchers. For the three-parameter gamma distribution we apply only one test using the empirical moment generating function since there are no classical tests using the empirical distribution function.
Finally, we estimate quantiles of the inverse Gaussian distribution. We start estimating quantiles for the three-parameter distribution and then we apply two procedures which estimate quantiles for the two-parameter distribution. The estimates of the quantiles for each family of distributions use two procedures for estimating intermediary the parameters of the distribution. The procedures are compared with respect to the normalized mean square error and the relative bias using simulations.
|
Page generated in 0.1463 seconds