Spelling suggestions: "subject:"modèle multiphysics""
1 |
Contribution à la modélisation et à la conception optimale des turbo-alternateurs de faible puissance.Petrichenko, Dmitry 10 July 2007 (has links) (PDF)
Dans les complexes industriels, les cahiers des charges sont de plus en plus exigeants en terme de performances et d'optimisation économique des installations de production électrique. Dans certains cas, oncherchera à minimiser les courants de court-circuit pour soulager les organes de coupure ; au contraire dans d'autres cas, on veillera à limiter les chutes de tension transitoires. Les moyens de calcul rapides permettant de dimensionner les machines, basés sur des modèles analytiques n'ont pas toujours la précision nécessaire. Les méthodes de calcul par Eléments Finis permettent d'optimiser des parties locales de la machine, mais deviennent trop lourds d'utilisation s'agissant de dimensionner des équipements pour répondre aux appels d'offre de matériel de moyenne puissance. La méthode proposée par L2EP de Lille et le MPEI de Moscou, basée sur l'emploi des réseaux de perméances, a retenu l'attention de Jeumont SA pour développer un nouveau logiciel dans le cadre du CNRT « Réseaux et Machines du Futur » de Lille. Cette méthode permet de conserver la rapidité d'exploitation et d'améliorer la précision de calcul en adaptant facilement le réseau de perméances à la configuration étudiée. Le travail développé est ouvert aux méthodes d'optimisation ainsi qu'à la prise en compte de régimes dynamiques. Dans ce travail, un modèle de turbo-alternateurs a été présenté, basé sur la méthode de contour de dents. L'outil ?TurboTCM' développé sous Matlab permet de générer de façon automatique le réseau de perméances. Des simulations ont été comparées aux résultats expérimentaux et ont montré la bonne correspondance des résultats. Puis, certaines caractéristiques de sortie sont données montrant les possibilités de l'outil. En réalisant un bon compromis entre le temps de calcul et la précision, nous pouvons envisager le couplage avec des outils d'optimisation. Dans un premier temps, une étude de sensibilité est fournie sachant que celle-ci peut être étendue à n facteurs influents. Les perspectives sont nombreuses sur l'application d'un tel outil. Il nous reste à valider celui-ci sur ?n' turbo-alternateurs de puissances différentes mais aussi avec un nombre de pôles différents. Un de nos objectifs à court terme est de coupler l'outil avec la méthode des plans d'expériences, permettant de considérer un grand nombre de facteurs, une première étape de ?Screening ou criblage' permettant de déduire les facteurs influents.
|
2 |
Vers une caractérisation multiphysique des pathologies médullaires humaines : couplage IRM multi-paramétrique et simulation biomécanique par éléments finis / Towards multi-physic characterization of spinal cord human pathologies : coupling between multi-parametric MRI and biomechanical finite element modelingTaso, Manuel 29 April 2016 (has links)
La myélopathie cervicale est une maladie chronique dégénérative de la moelle épinière dont la fréquence augmente avec l’âge. Elle est caractérisée par une compression mécanique menant à un endommagement de la structure médullaire et peut être source de handicaps sévères dégradant la qualité de vie. Néanmoins, la prise en charge clinique reste délicate.C’est pourquoi les travaux conduits dans le cadre de cette thèse se sont focalisés sur la compréhension des phénomènes biomécaniques à l’origine de cet endommagement (via des méthodes de simulation par éléments finis) et les conséquences microstructurelles pouvant être observées par IRM multi-paramétrique. Plus précisément, le but était d’établir un lien entre la cause mécanique et les conséquences structurelles menant aux déficits cliniques afin de mieux comprendre et prédire l’évolution de ces pathologies.Pour atteindre cela, une caractérisation de la morphologie et microstructure de la moelle épinière saine a été conduite par IRM, procurant à la fois une source de données normatives pour évaluer les atteintes chez patients mais aussi des données d’entrée pour raffiner les modèles numériques utilisés. D’un point de vue biomécanique, les phénomènes mécaniques observés lors d’une compression médullaire telle que pouvant être rencontrée dans une myélopathie cervicale ont été étudiés. Bien qu’à confirmer, les résultats obtenus au cours de ces travaux sont encourageants et posent une première pierre vers l’établissement de nouvelles méthodes permettant de mieux comprendre l’origine des déficits observés chez des patients souffrant de lésions médullaires en étudiant le lien entre mécanique, microstructure et fonction. / Cervical myelopathy is a chronic degenerative spinal cord pathology whose incidence increases with age. It is characterized by a mechanical compression leading to structural spinal cord damage. It can be at the origin of severe handicap hampering the quality of life. However, the clinical management remains challenging.This is why the work conducted in this thesis was focused on the comprehension of the biomechanics of the spinal cord damage (through numerical simulation finite element methods) and microstructural consequences that can be observed with multi-parametric MR imaging. More specifically, the final goal was to link the mechanical cause to the structural consequences at the origin of the clinical deficits in order to better understand and predict the pathology’s evolution.To reach that end, a characterization of the morphology and microstructure of the spinal cord was achieved using MRI, procuring on one side a normative database useful to study the alterations encountered in patients, and on another side to refine the numerical models employed. From a biomechanical perspective, the mechanisms of spinal cord compression as encountered in cervical myelopathy were studied using finite element analysis. The results obtained, which should be confirmed, are encouraging and represent a first stone towards the establishment of new methods in order to help in the clinical management of patients with spinal cord lesions by linking the mechanics, microstructure and function of the spinal cord.
|
Page generated in 0.145 seconds