1 |
Indecomposabilité dans les théories des champs et applications aux systèmes désordonnés et aux problèmes géométriquesRomain, Vasseur 27 September 2013 (has links) (PDF)
Les théories des champs conformes logarithmiques (LCFTs) sont cruciales pour décrire le comportement critique de systèmes physiques variés: les transitions de phase dans les systèmes électroniques désordonnés sans interaction (comme par exemple la transition entre plateaux dans l'effet Hall quantique entier), les points critiques désordonnés dans les systèmes statistiques classiques (comme le modèle d'Ising avec liens aléatoires), ou encore les modèles géométriques critiques (comme la percolation ou les marches aléatoires auto-évitantes). Les LCFTs décrivent des théories non unitaires, qui ne seraient probablement pas pertinentes dans le contexte de la physique des particules, mais qui apparaissent naturellement en matière condensée et en physique statistique. Sans cette condition d'unitarité, toute la puissance algébrique qui a fait le succès des théories conformes est fortement compromise à cause de ''l'indécomposabilité'' de la théorie des représentations sous-jacente. Ceci a pour conséquence de modifier les fonctions de corrélation algébriques par des corrections logarithmiques, et réduit sévèrement l'espoir d'une classification générale. Le but de cette thèse est d'analyser ces théories logarithmiques en étudiant leur régularisation sur réseau, l'idée principale étant que la plupart des difficultés algébriques causées par l'indécomposabilité sont déjà présentes dans des systèmes de taille finie. Notre approche consiste à considérer des modèles statistiques critiques avec matrice de transfert non diagonalisable (ou des chaînes de spins critiques avec Hamiltonien non diagonalisable) et d'analyser leur limite thermodynamique à l'aide de différentes méthodes numériques, algébriques et analytiques. On explique en particulier comment mesurer numériquement les paramètres universels qui caractérisent les représentations indécomposables qui apparaissent à la limite continue. L'analyse détaillée d'une vaste classe de modèles sur réseau nous permet également de conjecturer une classification de toutes les LCFTs chirales pertinentes physiquement, pour lesquelles la seule symétrie est donnée par l'algèbre de Virasoro. Cette approche est aussi partiellement étendue aux théories non chirales, avec une attention particulière portée au problème bien connu de la formulation d'une théorie des champs cohérente qui décrirait la percolation en deux dimensions. On montre que les modèles sur réseaux périodiques ou avec bords peuvent être reliés algébriquement seulement dans le cas des modèles minimaux, impliquant des conséquences intéressantes pour les théories des champs sous-jacentes. Un certain nombre d'applications aux systèmes désordonnés et aux modèles géométriques sont également abordées, avec en particulier une discussion détaillée des observables avec comportement logarithmique au point critique dans le modèle de Potts en dimension arbitraire.
|
2 |
Non compact conformal field theories in statistical mechanics / Théories conformes non compactes en physique statistiqueVernier, Eric 27 April 2015 (has links)
Les comportements critiques des systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique en 1+1 dimensions, ainsi que certains aspects des systèmes sans interactions en 2+1 dimensions, sont efficacement décrits par les méthodes de la théorie des champs conforme et de l'intégrabilité, dont le développement a été spectaculaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant toujours à une compréhension exacte, parmi lesquels celui de la transition entre plateaux dans l'Effet Hall Quantique Entier. La raison principale en est que de tels problèmes sont généralement associés à des théories non unitaires, ou théories conformes logarithmiques, dont la classification se révèle être d'une grande difficulté mathématique. Se tournant vers la recherche de modèles discrets (chaînes de spins, modèles sur réseau), dans l'espoir en particulier d'en trouver des représentations en termes de modèles exactement solubles (intégrables), on se heurte à la deuxième difficulté représentée par le fait que les théories associées sont la plupart du temps non compactes, ou en d'autres termes qu'elles donnent lieu à un continuum d'exposants critiques. En effet, le lien entre modèles discrets et théories des champs non compactes est à ce jour loin d'être compris, en particulier il a longtemps été cru que de telles théories ne pouvaient pas émerger comme limites continues de modèles discrets construits à partir d'un ensemble compact de degrés de libertés, par ailleurs les seuls qui donnent a accès à une construction systématique de solutions exactes.Dans cette thèse, on montre que le monde des modèles discrets compacts ayant une limite continue non compacte est en fait beaucoup plus grand que ce que les quelques exemples connus jusqu'ici auraient pu laisser suspecter. Plus précisément, on y présente une solution exacte par ansatz de Bethe d'une famille infinie de modèles(les modèles $a_n^{(2)}$, ainsi que quelques résultats sur les modèles $b_n^{(1)}$, où il est observé que tous ces modèles sont décrits dans un certain régime par des théories conformes non compactes. Parmi ces modèles, certains jouent un rôle important dans la description de phénomènes physiques, parmi lesquels la description de polymères en deux dimensions avec des interactions attractives et des modèles de boucles impliqués dans l'étude de modèles de Potts couplés ou dans une tentative de description de la transition entre plateaux dans l'Effet Hall par un modèle géométrique compact.On montre que l'existence insoupçonnéede limite continues non compacts pour de tels modèles peut avoir d'importantes conséquences pratiques, par exemple dans l'estimation numérique d'exposants critiques ou dans le résultats de simulations de Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la transition theta décrivant l'effondrement des polymères en deux dimensions, et des perspectives pour une potentielle compréhension de la transition entre plateaux en termes de modèles sur réseaux sont présentées. / The critical points of statistical mechanical systems in 2 dimensions or quantum mechanical systems in 1+1 dimensions (this also includes non interacting systems in 2+1 dimensions) are effciently tackled by the exact methods of conformal fieldtheory (CFT) and integrability, which have witnessed a spectacular progress during the past 40 years. Several problems have however escaped an exact understanding so far, among which the plateau transition in the Integer Quantum Hall Effect,the main reason for this being that such problems are usually associated with non unitary, logarithmic conformal field theories, the tentative classification of which leading to formidable mathematical dificulties. Turning to a lattice approach, andin particular to the quest for integrable, exactly sovable representatives of these problems, one hits the second dificulty that the associated CFTs are usually of the non compact type, or in other terms that they involve a continuum of criticalexponents. The connection between non compact field theories and lattice models or spin chains is indeed not very clear, and in particular it has long been believed that the former could not arise as the continuum limit of discrete models built out of acompact set of degrees of freedom, which are the only ones allowing for a systematic construction of exact solutions.In this thesis, we show that the world of compact lattice models/spin chains with a non compact continuum limit is much bigger than what could be expected from the few particular examples known up to this date. More precisely we propose an exact Bethe ansatz solution of an infinite family of models (the so-called $a_n^{(2)}$ models, as well as some results on the $b_n^{(1)}$ models), and show that all of these models allow for a regime described by a non compact CFT. Such models include cases ofgreat physical relevance, among which a model for two-dimensional polymers with attractive interactions and loop models involved in the description of coupled Potts models or in a tentative description of the quantum Hall plateau transition by somecompact geometrical truncation. We show that the existence of an unsuspected non compact continuum limit for such models can have dramatic practical effects, for instance on the output of numerical determination of the critical exponents or ofMonte-Carlo simulations. We put our results to use for a better understanding of the controversial theta transition describing the collapse of polymers in two dimensions, and draw perspectives on a possible understanding of the quantum Hall plateautransition by the lattice approach.
|
Page generated in 0.0758 seconds