1 |
Solving Games and All ThatSaffidine, Abdallah 08 July 2013 (has links) (PDF)
Efficient best-first search algorithms have been developed for deterministic two-player games with two-outcome.We present a formal framework to represent such best-first search algorithms.The framework is general enough to express popular algorithms such as Proof Number Search, Monte Carlo Tree Search, and the Product Propagation algorithm.We then show how a similar framework can be devised for two more general settings: two-player games with multiple outcomes, and the model checking problem in modal logic K.This gives rise to new Proof Number and Monte Carlo inspired search algorithms for these settings.Similarly, the alpha-beta pruning technique is known to be very important in games with sequential actions.We propose an extension of this technique for stacked-matrix games, a generalization of zero-sum perfect information two-player games that allows simultaneous moves.
|
2 |
Solving Games and All That / Résoudre les jeux et le resteSaffidine, Abdallah 08 July 2013 (has links)
Il existe des algorithmes en meilleur d'abord efficace pour la résolution des jeux déterministes à deux joueurs et à deux issues.Nous proposons un cadre formel pour la représentation de tels algorithmes en meilleur d'abord.Le cadre est suffisamment général pour exprimer des algorithmes populaires tels Proof Number Search, Monte Carlo Tree Search, ainsi que l'algorithme Product Propagation.Nous montrons par ailleurs comment adapter ce cadre à deux situations plus générales: les jeux à deux-joueurs à plusieurs issues, et le problème de model checking en logique modale K.Cela donne lieu √† de nouveau algorithmes pour ces situations inspirés des méthodes Proof Number et Monte Carlo.La technique de l'élagage alpha-beta est cruciale dans les jeux à actions séquentielles.Nous proposons une extension de cette techniques aux stacked-matrix games, une généralisation des jeux à deux joueurs, à information parfaite et somme nulle qui permet des actions simultanées. / Efficient best-first search algorithms have been developed for deterministic two-player games with two-outcome.We present a formal framework to represent such best-first search algorithms.The framework is general enough to express popular algorithms such as Proof Number Search, Monte Carlo Tree Search, and the Product Propagation algorithm.We then show how a similar framework can be devised for two more general settings: two-player games with multiple outcomes, and the model checking problem in modal logic K.This gives rise to new Proof Number and Monte Carlo inspired search algorithms for these settings.Similarly, the alpha-beta pruning technique is known to be very important in games with sequential actions.We propose an extension of this technique for stacked-matrix games, a generalization of zero-sum perfect information two-player games that allows simultaneous moves.
|
Page generated in 0.056 seconds