1 |
Design and analysis of routing algorithms for ATM networksJordan, T. P. January 1995 (has links)
No description available.
|
2 |
Modiciency - Efficient industrial hydraulic drives through independent metering using optimal operating modesKolks, Giacomo, Weber, Jürgen 27 April 2016 (has links) (PDF)
Independent metering poses a possibility to improve energy efficiency of throttlecontrolled hydraulic single-rod cylinder drives. This paper deals with energetic potentials gained through variable circuitry that come along with independent metering. A method to assess energetic potentials is described, based on load specific, optimal operating modes. As a means of yielding maximum energy efficiency for a wide range of applications, a smooth mode switching algorithm that minimizes losses and allows good motion tracking is proposed. The mode switching algorithm is validated in simulation and on a test stand.
|
3 |
A high performance ATM switch architectureChen, Hong Xu. January 2007 (has links)
Thesis (Ph.D) - Swinburne University of Technology, Faculty of Information & Communication Technologies, 2006. / A thesis submitted for the degree of Doctor of Philosophy, Faculty of Information and Communication Technologies, Swinburne University of Technology, 2006. Typescript. Bibliography p. ?? Includes bibliographical references (p. 135-142).
|
4 |
Energy efficient active cooling of integrated circuits using embedded thermoelectric devicesParthasarathy, Swarrnna Karthik 12 January 2015 (has links)
With technology scaling, the amount of transistors on a single chip doubles itself every 18 months giving rise to increased power density levels. This has directly lead to a rapid increase of thermal induced issues on a chip and effective methodologies of removing the heat from the system has become the order of the day. Thermoelectric (TE) devices have shown promise for on-demand cooling of ICs. However, the additional energy required for cooling remains a challenge for the successful deployment of these devices. This thesis presents a closed loop control system that dynamically switches a TE module between Peltier and Seebeck modes depending on chip temperature. The autonomous system harvests energy during regular operation and uses the harvested energy to cool during high power operation. The system is demonstrated using a commercial thin-film TE device, an integrated boost regulator and few off chip components. The feasibility of the integration of the TEM and the automated mode switching within the microprocessor package is also evaluated. With continuous usage of thermoelectric modules, it starts to degrade over time due to thermal and mechanical induced stress which in turn reduces the cooling performance over time. Impact of thermal cycling on thermoelectric cooling performance over time is evaluated using the developed full chip package model.
|
5 |
Modal Shift Forecasting Models for Transit Service PlanningIdris, Ahmed 09 January 2014 (has links)
This research aims at developing a better understanding of commuters preferences and mode switching behaviour towards local transit for work trips. The proposed methodological approach incorporates three main stages. The first introduces a conceptual framework for modal shift maximized transit route design model that extends the use of demand models beyond forecasting transit ridership to the operational extent of transit route design. The second deals with designing and implementing a socio-psychometric COmmuting Survey for MOde Shift (COSMOS). Finally, the third stage focuses on developing econometric choice models of mode switching behaviour towards public transit.
Advanced mode shift models are developed using state-of-the-art methodology of combining Revealed Preference (RP) and Stated Preference (SP) information. The results enriched our understanding of mode switching behaviour and revealed some interesting findings. Some socio-psychological variables have shown to have strong influence on mode shift and improved the models in terms of fitness and statistical significance. In an indication of the superiority of the car among other travel options, strong car use habit formation was realized for car drivers, making it hard to persuade them to switch to public transit. Further, unlike conventional choice models, the developed mode shift models showed that travel cost and in-vehicle travel time are of lower importance compared to other transit Level of Service (LOS) attributes such as waiting time, service reliability, number of transfers, transit technology, and crowding level. The results also showed that passengers are more likely to shift to rail-based modes (e.g. LRT and subway) than rubber-tyred modes (e.g. BRT). On the other hand, the availability of park-and-ride facilities as well as both schedule and real-time information provision did not appear to be significant for mode switching to public transit for work trips.
This research provides evidence that mode shift is a complex process which involves socio-psychological variables beside common socio-demographic and modal attributes. The developed mode switching models present a new methodologically sound tool for evaluating the impacts of alternative transit service designs on travel behaviour. Such tool is more desirable for transit service planning than the traditional ones and can aid in precisely estimating transit ridership.
|
6 |
Modal Shift Forecasting Models for Transit Service PlanningIdris, Ahmed 09 January 2014 (has links)
This research aims at developing a better understanding of commuters preferences and mode switching behaviour towards local transit for work trips. The proposed methodological approach incorporates three main stages. The first introduces a conceptual framework for modal shift maximized transit route design model that extends the use of demand models beyond forecasting transit ridership to the operational extent of transit route design. The second deals with designing and implementing a socio-psychometric COmmuting Survey for MOde Shift (COSMOS). Finally, the third stage focuses on developing econometric choice models of mode switching behaviour towards public transit.
Advanced mode shift models are developed using state-of-the-art methodology of combining Revealed Preference (RP) and Stated Preference (SP) information. The results enriched our understanding of mode switching behaviour and revealed some interesting findings. Some socio-psychological variables have shown to have strong influence on mode shift and improved the models in terms of fitness and statistical significance. In an indication of the superiority of the car among other travel options, strong car use habit formation was realized for car drivers, making it hard to persuade them to switch to public transit. Further, unlike conventional choice models, the developed mode shift models showed that travel cost and in-vehicle travel time are of lower importance compared to other transit Level of Service (LOS) attributes such as waiting time, service reliability, number of transfers, transit technology, and crowding level. The results also showed that passengers are more likely to shift to rail-based modes (e.g. LRT and subway) than rubber-tyred modes (e.g. BRT). On the other hand, the availability of park-and-ride facilities as well as both schedule and real-time information provision did not appear to be significant for mode switching to public transit for work trips.
This research provides evidence that mode shift is a complex process which involves socio-psychological variables beside common socio-demographic and modal attributes. The developed mode switching models present a new methodologically sound tool for evaluating the impacts of alternative transit service designs on travel behaviour. Such tool is more desirable for transit service planning than the traditional ones and can aid in precisely estimating transit ridership.
|
7 |
Modiciency - Efficient industrial hydraulic drives through independent metering using optimal operating modesKolks, Giacomo, Weber, Jürgen January 2016 (has links)
Independent metering poses a possibility to improve energy efficiency of throttlecontrolled hydraulic single-rod cylinder drives. This paper deals with energetic potentials gained through variable circuitry that come along with independent metering. A method to assess energetic potentials is described, based on load specific, optimal operating modes. As a means of yielding maximum energy efficiency for a wide range of applications, a smooth mode switching algorithm that minimizes losses and allows good motion tracking is proposed. The mode switching algorithm is validated in simulation and on a test stand.
|
8 |
Particle filter-based tracking to handle persistent and complex occlusions and imitate arbitrary black-box trackers / 長時間・複雑な遮蔽に対応、任意の追跡器を模倣可能なパーティクル・フィルターに基づく物体追跡Kourosh, Meshgi 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19342号 / 情博第594号 / 新制||情||103(附属図書館) / 32344 / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 石井 信, 教授 杉江 俊治, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
9 |
Quasi-Static Hydraulic Control Systems and Energy Savings Potential Using Independent Metering Four-Valve Assembly ConfigurationShenouda, Amir 06 July 2006 (has links)
In this research, the four valve independent metering configuration is to be investigated. The Independent metering concept will be emphasized and compared to spool valve coupled metering conventional technologies. Research focuses on the energy savings potential of the four valve independent metering configuration in addition to improving performance.
The basic model of interest in this research is an actuator that is controlled by the four valve independent metering configuration to move beam like members of mobile hydraulic equipment such as tractor loader backhoes, excavators, and telehandlers.
Five distinct (or discrete) metering modes that exist in the literature are initially studied: Powered Extension, High Side Regeneration Extension, Low Side Regeneration Extension, Powered Retraction, and Low Side Regeneration Retraction. The energy saving potential of these modes is studied and comparisons between this system and a conventional spool valve controlled actuator are conducted.
The problem of switching between these five modes is treated as an optimal control problem of a switched dynamic system. Before solving the optimal control problem, a dynamic model for the system of interest is first derived. The model is experimentally validated. General theory for the optimal control problem is derived and then applied to the hydraulic system of interest. The results are then interpreted and explained by looking into the force-speed capability of modes.
The effect of mode switching on system performance is studied as well. The basic mechanical system used for this analysis is a continuous rotating beam that undergoes
structural vibrations due to mode switching in the driving hydraulic actuator. A fully coupled actuator-beam model is investigated. A non-dimensional analysis is pursued to generalize the study results. The optimal switching analysis and the vibrational study lead to the idea of Continuously Variable Modes (CVMs).
Instead of having five distinct modes that determines the flow path by opening two of the four valves in the assembly, three Continuously Variable Modes are presented as an alternative way of controlling the four-valve configuration. These three CVMs combine the distinct modes and use three of the four valves to provide the fluid flow path. The five distinct modes become a special case of these three CVMs. It is going to be shown that CVMs have more force-speed capabilities than the distinct modes and provide for better velocity and vibrational performance by virtue of always offering a continuous flow path. The theory behind CVMs is presented and experimental validation follows.
|
10 |
An Experimental Investigation on Waves and Coherent Structures in a Three-Dimensional Open Cavity Flow / Étude Expérimentale des Ondes et Structures Cohérentes dans un Écoulement Tridimensionnel de Cavité Ouverte.Basley, Jérémy 19 October 2012 (has links)
Une écoulement de cavité ouverte tridimensionnel saturé non-linéairement est étudié par une approche spatio-temporelle utilisant des données expérimentales résolues à la fois en temps et en espace. Ces données ont été acquises dans deux plans longitudinaux, respectivement perpendiculaire et parallèle au fond de la cavité, dans le régime incompressible, en air ou en eau. À l'aide de multiples méthodes de décompositions globales en temps et en espace, les ondes et les structures cohérentes constituant la dynamique dans le régime permanent et pouvant être produites par des mécanismes d'instabilités différents sont identifiées et caractérisées.Tout d'abord, on approfondit la compréhension de l'effet des non-linéarités sur les oscillations auto-entretenues de la couche cisaillée impactante et leurs interactions avec l'écoulement intra-cavitaire. En particulier, l'analyse spectrale d'une portion de l'espace des paramètres permet de mettre en évidence un lien entre l'accrochage des modes d'oscillations auto-entretenues, la modulation d'amplitude au niveau du coin impactant et l'intermittence de ces modes. De plus, l'observation des basses fréquences intéragissant fortement avec les oscillations de la couche de mélange démontre l'existence d'une dynamique tridimensionnelle intrinsèque à l'intérieur de la cavité malgré les perturbations causées par la couche cisaillée instable.Les analyses de stabilité linéaire ont montré que des instabilités centrifuges peuvent résulter de la courbure induite par la recirculation. L'étude de la dynamique après saturation révèle de nombreuses structures cohérentes dont les propriétés sont quantifiées et classées en s'appuyant sur la forme des instabilités sous-jacentes: des ondes transverses progressives ou stationnaires. Enfin, certains comportements des structures saturées suggèrent que les mécanismes non-linéaires gouvernant le développement de l'écoulement une fois sorti du régime linéaire pourraient être étudiés dans le cadre des équations d'amplitude. / A space-time study of a three-dimensional nonlinearly saturated open cavity flow is undertaken using time-resolved space-extended experimental data, acquired in both cross-stream and spanwise planes, in incompressible air and water flows. Through use of multiple modal decompositions in time and space, the waves and coherent structures composing the dynamics in the permanent regime are identified and characterised with respect to the instabilities arising in the flow.Effects of nonlinearities are thoroughly investigated in the impinging shear layer, regarding the self-sustained oscillations and their interactions with the inner-flow. In particular, the analysis conducted throughout the parameter space enlightens a global connection between the selection of locked-on modes and the amplitude modulation at the impingement and the mode switching phenomenon. Furthermore, observations of low frequencies interacting drastically with the shear layer flapping motion underline the existence of intrinsic coherent three-dimensional dynamics inside the cavity in spite of the shear layer disturbances.Linear stability analyses have demonstrated that centrifugal instabilities are at play along the main recirculation. The present investigation of the dynamics after onset of the saturation reveals numerous space-time coherent structures, whose properties are quantified and classified with respect to the underlying instabilities: travelling or standing spanwise waves. Finally, some patterns exhibited by the saturated structures suggest that the nonlinear mechanisms governing the mutations of the flow after the linear regime could gain more insight in the frame of amplitude equations.
|
Page generated in 0.1013 seconds