• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abordagem clássica e bayesiana para os modelos de séries temporais da família GARMA com aplicações para dados contínuos

Cascone, Marcos Henrique 24 March 2011 (has links)
Made available in DSpace on 2016-06-02T20:06:04Z (GMT). No. of bitstreams: 1 3603.pdf: 602959 bytes, checksum: 3078931e73ff3d01b4122cbac2c7f0a0 (MD5) Previous issue date: 2011-03-24 / Financiadora de Estudos e Projetos / In this work, the aim was to analyze in the classic and bayesian context, the GARMA model with three different continuous distributions: Gaussian, Inverse Gaussian and Gamma. We analyzed the performance and the goodness of fit of the three models, as well as the performance of the coverage percentile. In the classic analyze we consider the maximum likelihood estimator and by simulation study, we verified the consistency, the bias and de mean square error of the models. To the bayesian approach we proposed a non-informative prior distribution for the parameters of the model, resulting in a posterior distribution, which we found the bayesian estimatives for the parameters. This study still was not found in the literature. So, we can observe that the bayesian inference showed a good quality in the analysis of the serie, which can be comprove with the last section of this work. This, consist in the analyze of a real data set corresponding in the rate of tuberculosis cases in metropolitan area of Sao Paulo. The results show that, either the classical and bayesian approach, are good alternatives to describe the behavior of the real time serie. / Neste trabalho, o objetivo foi analisar no contexto clássico e bayesiano, o modelo GARMA com três distribuições contínuas: Gaussiana (Normal), Inversa Gaussiana e Gama, e também o desempenho e a qualidade do ajuste dos modelos de interesse, bem como o desempenho dos percentis de cobertura para eles. Para o estudo clássico foi considerado os estimadores de máxima verossimilhança e por meio de simulação verificou-se a consistência, o viés e o erro quadrático médio dos mesmos. Para a abordagem bayesiana é proposta uma distribuição a priori não informativa para os parâmetros dos modelos resultando em uma distribuição a posteriori, o qual a partir daí pode-se encontrar as estimativas bayesianas para os parâmetros, sendo que este estudo ainda não foi encontrado na literatura. Com isso pode-se observar que a inferência bayesiana mostrou boa eficiência no processo de análise da série, o que pode ser comprovado também com a última etapa do trabalho. Esta, consiste na análise de um conjunto de dados reais correspondente a taxa de casos de tuberculose na região metropolitana de São Paulo. Os resultados mostram que, tanto o estudo clássico quanto o bayesiano, são capazes de descrever bem o comportamento da série.
2

Abordagem estatística em modelos para séries temporais de contagem

Andrade, Breno Silveira de 06 May 2013 (has links)
Made available in DSpace on 2016-06-02T20:06:08Z (GMT). No. of bitstreams: 1 5190.pdf: 1093269 bytes, checksum: 0d9bf9c7a3855887a0f66859b3a9cc22 (MD5) Previous issue date: 2013-05-06 / Financiadora de Estudos e Projetos / In this work, it was estudied the models INGARCH , GLARMA and GARMA to model count time series data with Poisson and Negative Binomial discrete conditional distributions. The main goal was analyze in classic and bayesian approach, the adequability and goodness of fit of these models, also the contruction of credibility intervals about each parameter. To the Bayesian study, was cosiderated a joint prior distribuition that satisfied the conditions of each model and got a posterior distribution. This aproach presents too some criterion selection like (EBIC), (DIC) and ordenaded predictive conditional density (CPO) for Bayesian cases and (BIC) for classic cases. A simulation study was done to check the maximum likelihood estimator consistency in classic approach and has used criterion selection classic and Bayesian to choose the order of each model. An Analysis has made in a real data set realized as final stage as, these data consist the number of financial transactions in 30 minutes. These results have made in a classical and Bayesian approach , and discribed the data caracteristic. / Nesta dissertação estudou-se os modelos INGARCH, GLARMA e GARMA para modelar séries temporais de dados de contagem com as distribuições condicionais de Poisson e Binomial Negativa. A principal finalidade foi analisar no contexto clássico e bayesiano, a adequabilidade e qualidade de ajuste dos modelos em questão, assim como a construção de intervalos de credibilidade dos parâmetros para cada modelo testado. Para a abordagem Bayesiana foram consideradas priori conjugada, satisfazendo as condições de cada modelo em questão, obtendo assim uma distribuição a posteriori. A abordagem proposta apresenta também o cálculo de critérios de seleção de modelos como o (EBIC), (DIC) e densidade condicional preditiva ordenada (CPO) para o caso Bayesiano e (BIC) para a abordagem clássica. Com um estudo de simulação foi possível verificar a consistência dos estimadores de máxima verossimilhança (clássicos) além disso, foi usado critérios de seleção clássicos e Bayesianos para a seleção da ordem de cada um dos modelos. Uma análise de um conjunto de dados reais foi realizada, sendo uma série do número de transações financeiras realizadas em 30 minutos respectiva os mês de novembro de 2011. Estes resultados apresentam que tanto o estudo clássico, quanto o bayesiano, são capazes de descrever bem o comportamento da série e foram eficientes na escolha da ordem do mesmo.

Page generated in 0.0331 seconds