• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 18
  • 16
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and biological activity of mimics of D-myo-inositol 1,4,5-trisphosphate and adenophostin A

Rosenberg, Heidi J. January 2002 (has links)
No description available.
2

The glucose transporter type 1 deficiency syndrome: new insights into diagnosis, pathogenicity, and treatment.

January 2004 (has links)
Wong Hei Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 157-175). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abstract 摘要 --- p.iv / List of Figures --- p.vi / List of Tables --- p.ix / List of Abbreviations --- p.x / Table of Contents --- p.xiii / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Importance of Glucose in Biological System --- p.1 / Chapter 1.2 --- Glucose Transporter Families --- p.2 / Chapter 1.2.1 --- Na+-Dependent Glucose Transporters --- p.2 / Chapter 1.2.2 --- Facilitative Glucose Transporters --- p.3 / Chapter 1.3 --- Glucose Transporter Type1 --- p.7 / Chapter 1.3.1 --- Primary Structure --- p.7 / Chapter 1.3.2 --- Secondary Structure --- p.8 / Chapter 1.3.3 --- Membrane Topology --- p.8 / Chapter 1.3.4 --- Tertiary Structure --- p.9 / Chapter 1.3.5 --- Kinetics Properties --- p.11 / Chapter 1.3.6 --- Affinity Reagents --- p.12 / Chapter 1.3.7 --- Tissue Distribution --- p.13 / Chapter 1.3.8 --- Multifunctional Property --- p.14 / Chapter 1.3.9 --- Characterization of GLUT1 Gene --- p.14 / Chapter 1.3.10 --- Regulation of GLUT1 Expression --- p.15 / Chapter 1.4 --- Glucose Transporter Type 1 and the Brain --- p.17 / Chapter 1.5 --- Glucose Transporter Type 1 Deficiency Syndrome --- p.20 / Chapter 1.5.1 --- Background of GlutlDS --- p.20 / Chapter 1.5.2 --- Clinical Features of GlutlDS --- p.23 / Chapter 1.5.3 --- Genotype-Phenotype Correlations --- p.24 / Chapter 1.5.4 --- Diagnosis --- p.26 / Chapter 1.5.4.1 --- Erythrocyte Glucose Transporter Activity --- p.26 / Chapter 1.5.4.2 --- Molecular Genetic Testing of GLUT1 Gene --- p.27 / Chapter 1.5.4.3 --- Glucose Concentration --- p.27 / Chapter 1.5.5 --- Management --- p.28 / Chapter 1.5.5.1 --- Ketogenic Diet --- p.28 / Chapter 1.5.5.2 --- Medication --- p.29 / Chapter 1.5.5.2.1 --- Glutl Activator --- p.29 / Chapter 1.5.5.2.2 --- Glutl Inhibitor --- p.29 / Chapter 1.6 --- Hypothesis and Objectives --- p.31 / Chapter Chapter 2: --- Identification of the First Two Asian GlutlDS Cases --- p.33 / Chapter 2.1 --- Materials --- p.34 / Chapter 2.1.1 --- Clinical History of Suspected GlutlDS Patients --- p.34 / Chapter 2.1.2 --- Blood Samples --- p.35 / Chapter 2.1.3 --- Reagents for Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.35 / Chapter 2.1.4 --- Reagents for Zero-trans Efflux of 3-OMG Uptake in Erythrocytes --- p.37 / Chapter 2.1.5 --- Reagents for Glutl Gene Analysis --- p.37 / Chapter 2.1.6 --- Reagents and Buffers for Reverse Transcription --- p.38 / Chapter 2.1.7 --- Reagents and Buffers for Agarose Gel Electrophoresis --- p.39 / Chapter 2.1.8 --- Reagents for Erythrocytes Membrane Preparation and Detection --- p.41 / Chapter 2.2 --- Methods --- p.46 / Chapter 2.2.1 --- Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.46 / Chapter 2.2.2 --- Zero-trans Efflux of 3-OMG out of Erythrocytes --- p.47 / Chapter 2.2.3 --- Glutl Protein Expression --- p.48 / Chapter 2.2.4 --- GLUT1 Gene Analyses --- p.51 / Chapter 2.2.5 --- Statistics --- p.58 / Chapter 2.3 --- Results --- p.59 / Chapter 2.4 --- Discussions and Conclusions --- p.69 / Chapter Chapter 3: --- Pathogenicity of GLUT1 Mutations --- p.78 / Chapter 3.1 --- Materials --- p.79 / Chapter 3.1.1 --- Construction of Glutl-Encoding Vectors --- p.79 / Chapter 3.1.2 --- Cell Lines --- p.80 / Chapter 3.1.3 --- "Cell Culture Media, Buffers and Other Reagents" --- p.81 / Chapter 3.1.4 --- Cell Culture Wares --- p.83 / Chapter 3.1.5 --- Reagents for Transfection --- p.83 / Chapter 3.1.6 --- Reagents for Protein Determination and Western Blot Analysis --- p.83 / Chapter 3.1.7 --- Reagents and Buffers for Flow Cytometry --- p.84 / Chapter 3.1.8 --- Reagents for 2-DOG Uptake in CHO-K1 Cells --- p.84 / Chapter 3.1.9 --- Reagents and Consumables for Confocal Microscopy --- p.85 / Chapter 3.2 --- Methods --- p.86 / Chapter 3.2.1 --- Cell Culture Methodology --- p.86 / Chapter 3.2.2 --- Construction of Glutl-Encoding Vectors --- p.87 / Chapter 3.2.3 --- Construction of Glutl Mutants --- p.91 / Chapter 3.2.4 --- Establishment of Wild Type and Mutant Glutl Expressing Cell Lines --- p.92 / Chapter 3.2.5 --- Glucose Influx Assays in CHO-K1 Cells --- p.96 / Chapter 3.2.6 --- Confocal Microscopy Studies on Glutl Cellular Localization --- p.97 / Chapter 3.2.7 --- Statistics --- p.98 / Chapter 3.3 --- Results --- p.99 / Chapter 3.4 --- Discussions and Conclusions --- p.112 / Chapter Chapter 4: --- Effects of Anticonvulsive Compounds on Cellular Glucose Transport --- p.117 / Chapter 4.1 --- Materials --- p.118 / Chapter 4.1.1 --- Cell Lines --- p.118 / Chapter 4.1.2 --- Cell Culture Media --- p.118 / Chapter 4.1.3 --- Blood Sample --- p.119 / Chapter 4.1.4 --- Anticonvulsive Compounds --- p.119 / Chapter 4.1.5 --- Reagents for Zero-trans Influx of 3-OMG Uptake in Fibroblasts --- p.120 / Chapter 4.1.6 --- Reagents for Zero-trans Influx of 2-DOG Uptake in Primary Astrocytes --- p.120 / Chapter 4.1.7 --- Reagents for Total RNA Isolation --- p.121 / Chapter 4.1.8 --- Reagents and Consumables for Real-Time PCR --- p.122 / Chapter 4.2 --- Methods --- p.123 / Chapter 4.2.1 --- Cell Culture --- p.123 / Chapter 4.2.2 --- Drug Concentrations --- p.123 / Chapter 4.2.3 --- Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.123 / Chapter 4.2.4 --- Zero-trans Influx of 3-OMG Uptake in Fibroblasts --- p.124 / Chapter 4.2.5 --- Zero-trans Influx of 2-DOG Uptake in Primary Astrocytes --- p.125 / Chapter 4.2.6 --- Gene Expression Study --- p.127 / Chapter 4.2.7 --- Statistics --- p.130 / Chapter 4.3 --- Results --- p.131 / Chapter 4.4 --- Discussions and Conclusions --- p.148 / Chapter Chapter 5: --- General Conclusions and Future Perspectives --- p.154 / References --- p.157
3

Neue anionische Glykopolymere Synthese und Charakterisierung von Polyvinylsacchariden auf der Basis von Methacrylamido- und Maleinsäureamidosacchariden /

Hüttermann, Carsten Friedrich. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Braunschweig.
4

Enantioselektive Erkennung von Kationen und Monosacchariden mit synthetischen Cyclopeptiden aus Prolin und 3-Aminobenzoesäurederivaten

Heinrichs, Guido. Unknown Date (has links)
Universiẗat, Diss., 2004--Düsseldorf.
5

Signaling function and domain structure of UhpA, the uhpT transcription activator of Escherichia coli /

Webber, Carol Ann. January 1997 (has links)
Thesis (Ph. D.)--University of Virginia, 1997. / Spine title: Structure & function of uhpA. Includes bibliographical references (138-146). Also available online through Digital Dissertations.
6

Synthesis and characterization of sugar based low molecular weight gelators

Yang, Hao 18 May 2012 (has links)
Low molecular weight gelators (LMWGs) have gained great attention over the past two decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and form gel. LMWGs are interesting compounds with many potential applications in material and biomedical sciences. Many different structures have been found to be good LMWGs. Our interests focus on the carbohydrate based LMWGs. Previously, we have found that several ester derivatives of methyl 4, 6-O-benzylidene-α-D-glucopyranoside are good gelators for organic solvents and aqueous solutions. In this study, in order to understand the structure requirement, we systematically investigated the influence of sugar head groups and the attached hydrophobic tails towards gelation. The design, synthesis and gel properties of esters, amides, ureas, carbamates which derived from sugar head groups show above will be discussed in chapter II, III, IV.
7

Cellular uptake and effect of phosphorothioated antisense oligodeoxynucleotides against glucose transporter 1 and glucose transporter 5 on breast tumor MCF-7 cells.

January 1999 (has links)
by Tsui Hong Teng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 174-181). / Abstracts in English and Chinese. / A CKNO WLED GMENTS --- p.7 / ABSTRACT --- p.8-10 / Chapter Chapter 1: --- Introduction: --- p.11-44 / Chapter 1.1) --- Glucose transporters / Chapter 1.2) --- Glucose transporters and cancers / Chapter 1.3) --- Antisense strategies / Chapter 1.4) --- Cellular uptake of oligonucleotides / Chapter 1.5) --- Hyperthermia and combined treatments / Chapter Chapter 2: --- Materials and methods --- p.45-60 / Chapter 2.1) --- Materials: / Chapter 2.1a) --- Cell lines and culture media / Chapter 2.1b) --- Oligonucleotides synthesis / Chapter 2.1c) --- Chemicals / Chapter 2.2) --- Methods: / Chapter 2.2a) --- Oligonucleotide design / Chapter 2.2b) --- Oligonucleotide treatment / Chapter 2.2c) --- Flow cytometry / Chapter 2.2d) --- Confocal microscopy / Chapter 2.2e) --- MTT assay for cytotoxicity or cell proliferation / Chapter Chapter 3: --- Cellular uptake of oligonucleotide spontaneously and Lipofectin-aided: --- p.61-85 / Chapter 3.1) --- Introduction / Chapter 3.2) --- Flow cytometric studies / Chapter 3.3) --- Confocal microscopic studies / Chapter 3.4) --- Cytotoxic effect of Lipofectin alone on MCF-7 cells / Chapter 3.5) --- Discussion / Chapter Chapter 4: --- Hyperthermia can enhance oligonucleotide uptake: --- p.86-118 / Chapter 4.1) --- Introduction / Chapter 4.2) --- Flow cytometric studies / Chapter 4.3) --- Confocal microscopic studies / Chapter 4.4) --- Cytotoxic effect of hyperthermia on MCF-7 cells / Chapter 4.5) --- FITC-ODN uptake in survival cells by propidium iodide (PI) exclusion method for hyperthermia / Chapter 4.6) --- Discussion / Chapter Chapter 5: --- The antiproliferative effects of antisense molecules against Glut-1 and 5 on MCF- 7 cells transfected by Lipofectin: --- p.119-146 / Chapter 5.1) --- Introduction / Chapter 5.2) --- The growth curve of MCF-7 cells / Chapter 5.3) --- The calibration of MTT assay / Chapter 5.4) --- The effect of antisense Glut-1 concentration without Lipofectin on MCF-7 cells / Chapter 5.5) --- The effect of antisense Glut-1 concentration with Lipofectin on MCF-7 cells / Chapter 5.6) --- The effect of antisense Glut-5 concentration without Lipofectin on MCF-7 cells / Chapter 5.7) --- The effect of antisense Glut-5 concentration with Lipofectin on MCF-7cells / Chapter 5.8) --- The effect of transfection time of antisense Glut-1 on MCF-7 cells / Chapter 5.9) --- The effect of transfection time of antisense Glut-5 on MCF-7 cells / Chapter 5.10) --- The effect of transfection time of antisense Glut-5 for higher concentration on MCF-7 cells / Chapter 5.11) --- The effect of antisense Glut-1 to Lipofectin (w/w) ratio on MCF-7 cells / Chapter 5.12) --- The effect of antisense Glut-1 to Lipofection (w/w) ratio for higher transfection time on MCF-7 cells / Chapter 5.13) --- The effect of antisense Glut-5 to Lipofectin (w/w) ratio on MCF-7 cells / Chapter 5.14) --- Discussion / Chapter Chapter 6: --- Combined treatments: --- p.147-162 / Chapter 6.1) --- Introduction / Chapter 6.2) --- The effect of combined treatment of antisense Glut-1 combined with antisense Glut-5 on MCF-7 cells / Chapter 6.3) --- The chronic effect of hyperthermia for 5 hours on MCF-7 cells / Chapter 6.4) --- The effect of combined treatment between antisense Glut-1 and hyperthermia on MCF-7 cells / Chapter 6.5) --- The net effect of antisense Glut-1 in combined treatment between hyperthermia and antisense Glut-1 on MCF-7 cells / Chapter 6.6) --- The effect of combined treatment between antisense Glut-5 and hyperthermia on MCF-7 cells / Chapter 6.7) --- The net effect of antisense Glut-5 in combined treatment between hyperthermia and antisense Glut-5 on MCF-7 cells / Chapter 6.8) --- Discussion / Chapter Chapter 7: --- Discussion: --- p.163-173 / Chapter Chapter 8: --- References: --- p.174-181
8

The effect of actin reorganization in insulin mediated glucose transport on L6 rat skeletal muscle cells.

January 2002 (has links)
Chan Chung Sing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 93-101). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ix / List of Abbreviations --- p.xvii / Chapter CHATPER ONE --- INTRODUCTION / Chapter 1.1 --- Glucose Homeostasis --- p.1 / Chapter 1.1.1 --- Function --- p.1 / Chapter 1.1.2 --- Origins and regulation of glucose --- p.2 / Chapter 1.1.3 --- Glucoregulatory factors --- p.4 / Chapter 1.1.4 --- Insulin --- p.6 / Chapter 1.1.4.1 --- Function of Insulin --- p.7 / Chapter 1.1.4.2 --- Discovery and Production of Insulin --- p.7 / Chapter 1.1.4.3 --- Insulin Signaling Pathway --- p.8 / Chapter 1.1.4.3.1 --- Insulin Receptor --- p.8 / Chapter 1.1.4.3.2 --- MAPK Pathway --- p.9 / Chapter 1.1.4.3.3 --- Phosphatidylinositol 3-kinase (PI3-K) Pathway --- p.10 / Chapter 1.1.5 --- Glucose Transporters --- p.11 / Chapter 1.1.6 --- Role of skeletal muscle in glucose homeostasis --- p.13 / Chapter 1.1.7 --- Insulin Resistance --- p.14 / Chapter 1.1.8 --- Glucose abnormality and its complications --- p.16 / Chapter 1.2 --- Actin --- p.19 / Chapter 1.2.1 --- Function of Actin --- p.20 / Chapter 1.2.2 --- Actin Accessory Protein --- p.22 / Chapter 1.2.3 --- Actin Polymerization --- p.23 / Chapter 1.3 --- "Interaction between Insulin, GLUT4 and Actin in Glucose Homeostasis" --- p.24 / Chapter 1.3.1 --- Insulin-Induced Actin Remodeling --- p.25 / Chapter 1.3.2 --- Actin Remodeling and Insulin-Induced GLUT4 Translocation --- p.26 / Chapter 1.3.3 --- Involvement of Insulin Signaling Molecules in Actin Remodeling --- p.27 / Chapter 1.3.4 --- Actin Remodeling and Insulin Resistance --- p.30 / Chapter 1.4 --- Hypothesis and Objective --- p.30 / Chapter 1.4.1 --- Rationale --- p.30 / Chapter 1.4.2 --- Hypothesis --- p.31 / Chapter 1.4.3 --- Objective --- p.31 / Chapter CHAPTER TWO --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.33 / Chapter 2.2 --- Cell Culture --- p.36 / Chapter 2.2.1 --- Cell Culture --- p.36 / Chapter 2.2.2 --- Reagents Preparation and Incubation --- p.39 / Chapter 2.3 --- 2-Deoxyglucose Uptake --- p.39 / Chapter 2.4 --- Immunofluorescence Microscopy --- p.41 / Chapter 2.4.1 --- Permeabilized cell staining --- p.41 / Chapter 2.4.2 --- Membrane-intact cell staining --- p.43 / Chapter 2.4.3 --- The analysis of actin remodeling reduction --- p.44 / Chapter 2.5 --- Live Image Microscopy --- p.44 / Chapter 2.6 --- Transmission Electron Microscope Study --- p.44 / Chapter 2.7 --- Statistical Analysis --- p.46 / Chapter CHAPTER THREE --- RESULTS / Chapter 3.1 --- Cell Growth --- p.48 / Chapter 3.2 --- Acute Effect of Insulin on L6 myotubes --- p.48 / Chapter 3.2.1 --- Immunofluorescence Microscopy --- p.49 / Chapter 3.2.1.1 --- The time profile of insulin on actin cytoskeletonin permeabilized L6 myotubes --- p.49 / Chapter 3.2.1.2 --- The concentration effect of insulin on actin cytoskeletonin permeabilized L6 myotubes --- p.50 / Chapter 3.2.1.3 --- Relationship between actin cytoskeleton and GLUT4mycin permeabilized L6 myotubes --- p.51 / Chapter 3.2.1.4 --- Translocation of GLUT4myc in membrane-intact L6 myotubes --- p.51 / Chapter 3.2.1.5 --- "Effect of methyl-β-cyclodextrins, MeOH or EtOHin permeabilized and membrane-intact L6 myotubes" --- p.52 / Chapter 3.2.2 --- 2-Deoxyglucose Uptake --- p.52 / Chapter 3.2.2.1 --- "Effects of insulin, methyl-β-cyclodextrins, MeOH and EtOH in L6 myotubes" --- p.52 / Chapter 3.2.3 --- TEM Study --- p.53 / Chapter 3.2.3.1 --- Effects of insulin on actin cytoskeleton and GLUT4myc in L6 myotubes --- p.53 / Chapter 3.3 --- Effect of high glucose and high insulin incubation in L6 myotubes --- p.54 / Chapter 3.3.1 --- Immunofluorescence Microscopy --- p.54 / Chapter 3.3.1.1 --- High insulin and high glucose preincubation in permeabilized L6 myotubes --- p.55 / Chapter 3.3.1.2 --- Effect of high insulin and high glucose incubationin membrane-intact L6 myotubes --- p.55 / Chapter 3.3.2 --- 2-Deoxyglucose Uptake --- p.56 / Chapter 3.3.2.1 --- Effect of high insulin and high glucose incubation in L6 myotubes --- p.56 / Chapter 3.3.3 --- TEM Study --- p.57 / Chapter 3.3.3.1 --- Effect of high insulin and high glucose incubation in L6 myotubes --- p.57 / Chapter 3.4 --- Effect of FFA incubation in L6 myotubes --- p.58 / Chapter 3.4.1 --- Immunofluorescence Microscopy --- p.58 / Chapter 3.4.1.1 --- FFA preincubation in permeabilized L6 myotubes --- p.58 / Chapter 3.4.1.2 --- FFA incubation in membrane-intact L6 myotubes --- p.59 / Chapter 3.4.2 --- 2-Deoxyglucose Uptake --- p.59 / Chapter 3.4.2.1 --- FFA incubation in L6 myotubes (24 hours) --- p.60 / Chapter 3.4.3 --- TEM Study --- p.62 / Chapter 3.4.3.1 --- FFA incubation in L6 myotubes --- p.62 / Chapter 3.5 --- Effect of CHO incubation in L6 myotubes --- p.62 / Chapter 3.5.1 --- Immunofluorescence Microscopy --- p.62 / Chapter 3.5.1.1 --- CHO preincubation in permeabilized L6 myotubes --- p.63 / Chapter 3.5.1.2 --- CHO incubation in membrane-intact L6 myotubes --- p.63 / Chapter 3.5.2 --- 2-Deoxyglucose Uptake --- p.64 / Chapter 3.5.2.1 --- CHO incubation in L6 myotubes (24 hours) --- p.64 / Chapter 3.5.3 --- TEM Study --- p.65 / Chapter 3.5.3.1 --- CHO incubation in L6 myotubes --- p.65 / Chapter 3.6 --- Overall changes in glucose uptake after preincubation experiment --- p.65 / Chapter CHAPTER FOUR --- DISCUSSION / Chapter 4.1 --- Effect of insulin on L6 myotubes --- p.69 / Chapter 4.2 --- "Effect of methyl-β-cyclodextrins, MeOH and EtOH on L6 myotube" --- p.75 / Chapter 4.3 --- Effect of pretreatment of cells in conditions of insulin resistance --- p.76 / Chapter 4.3.1 --- Effect of high glucose and high insulin preincubation on L6 myotubes --- p.76 / Chapter 4.3.2 --- Effect of FFA preincubation on L6 myotubes --- p.78 / Chapter 4.3.3 --- Effect of CHO preincubation on L6 myotubes --- p.82 / Chapter 4.3.4 --- Effect of cell preincubation in conditions of insulin resistance on L6 myotubes (TEM) --- p.83 / Chapter 4.4 --- Summary of the effects of cell preincubation in conditions of insulin resistance --- p.84 / Chapter 4.5 --- Possible mechanisms involved in insulin resistance induction --- p.86 / Chapter 4.5.1 --- Possible changes in GLUT expression and activities --- p.87 / Chapter 4.5.2 --- Possible changes in insulin signaling propagation --- p.88 / Chapter 4.5.3 --- Altered functioning of various actin accessory proteins --- p.89 / Chapter 4.6 --- Limitation of the study --- p.90 / Chapter 4.7 --- Conclusion --- p.90 / Chapter 4.8 --- Future study --- p.91 / REFERENCES --- p.93 / TABLES
9

A study on the expression of glucose transporters in ehrlich ascites tumor and SC180 sarcoma. / CUHK electronic theses & dissertations collection

January 1998 (has links)
by Au Kwong Keung. / Thesis (Ph.D.)--chinese University of Hong Kong, 1998. / Includes bibliographical references (p. 212-227). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
10

Acute regulation of glut1 function the role of detergent-resistant membrane domains /

Rubin, Darrell. January 2004 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2004. / [School of Medicine] Department of Pathology. Includes bibliographical references. Available online via OhioLINK's ETD Center.

Page generated in 0.0466 seconds