• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 28
  • 22
  • 18
  • 16
  • 13
  • 9
  • 6
  • 3
  • Tagged with
  • 381
  • 381
  • 55
  • 50
  • 47
  • 41
  • 38
  • 36
  • 36
  • 33
  • 30
  • 29
  • 27
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Hedgehog signalling in lung development and airway regeneration

Uda Ho Unknown Date (has links)
Tumorigenesis is often caused by the dysregulation of developmental pathways that are activated during repair, a process that recapitulates development. The Hedgehog (Hh) pathway is a signalling pathway essential for cell patterning and identity during embryogenesis. Activation of Hh signalling has been reported in small cell lung cancer progression, but the role of the Hh receptor, Patched1 (Ptch1), remains poorly understood. Therefore, it is imperative that we understand how Ptch1 is involved in development and tissue repair in order to understand its roles in cancer. This project aimed to study the role of Ptch1 during the branching process of lung development and in the regeneration of airway epithelial cells. A conditional knockout approach was utilised to excise Ptch1 by crossing Ptch1 conditional mice with Dermo1-Cre mice (Dermo1Cre+/-;Ptch1lox/lox), thereby activating the Hh pathway in the mesenchyme, independent of ligand. Dermo1Cre+/-;Ptch1lox/lox embryos died at E12.0 and showed secondary lung branching arrest leading to lobe formation defects. Expression of Ptch1, Gli1 and Foxf1 were shown to be upregulated in both proximal and distal lung mesenchyme, indicating inappropriate pathway activation and disruption of the Hh gradient. Fgf10 expression was spatially reduced in Dermo1Cre+/-;Ptch1lox/lox lungs and the addition of Fgf10 to these lungs in culture showed partial restoration of branching, thus Hh signalling was shown to regulate branching via Fgf10. Due to the patterning defect associated with our in vivo model, we took an in vitro approach to delete Ptch1 in lung explants cultures. This also showed reduced branching and validated that mesenchymal proliferation was enhanced after Ptch1 deletion, consistent with the previously reported role of Hh signalling in mesenchymal cell survival. Small cell lung cancer originates in the proximal lung and has been linked to aberrant repair processes. Therefore, Hh signalling in proximal airway repair was investigated. Ptch1 expressing cells were detected in the bronchial epithelium and stroma during homeostasis. But these cells were not detected following polidocanol-induced injury in the murine nasal septum and lung. However during naphthalene-induced repair, Ptch1 expressing cells were detected in the regenerating bronchial epithelium, suggesting that Hh dependent progenitors respond specifically to naphthalene-induced damage and perhaps are pulmonary neuroendocrine or variant Clara cells. Therefore, this project has provided insight into how Ptch1 patterns lung branching and lobe specification during development and also highlights the importance of Ptch1 in pulmonary epithelial regeneration.
212

Involvement of the nuclear factor-kappaB (NF-êB) pathway in peritoneal endometriosis

González Ramos, Reinaldo 05 June 2007 (has links)
Endometriosis is a gynecological disease in which endometrial glands and stroma are present outside the uterus. Pelvic pain, infertility and decreased quality of life are the main problems caused by this disease carrying epidemiological and social impact. Peritoneal endometriosis which is characterized by the presence of red, black and white pelvic endometriotic lesions is clearly a multifactorial pathology associated with a local inflammatory response in the pelvic cavity. In vitro studies suggest that the transcription factor nuclear factor-kappaB (NF-êB) is implicated in the transduction of proinflammatory signals in endometriosis. The aim of this study was to investigate the involvement and role of the NF-êB pathway in endometriosis in vivo. Firstly, NF-êB activation and intercellular adhesion molecule (ICAM)-1 expression were investigated in thirty-six peritoneal endometriotic lesions from women. Constitutive NF-êB activation, involving p65- and p50-containing dimers, was demonstrated in peritoneal endometriotic lesions by electrophoretic mobility shift assays and supershift analyses, as well as NF-êB (p65) DNA-binding activity immunodetection assays. NF-êB activation and ICAM-1 expression were significantly higher in red lesions than black lesions, while IêBá (NF-êB inhibitory protein) expression was constant, as shown by Western blot analyses. Secondly, endometriosis was induced in nude mice by intraperitoneal injection of fluorescent labeled menstrual endometrium. Two NF-êB inhibitors (BAY 11-7085 and SN-50) were injected intraperitoneally and endometriotic lesions were recovered on day 5. Both NF-êB inhibitors induced a significant reduction in lesion development compared to control mice. NF-êB activation and ICAM-1 expression of endometriotic lesions were significantly reduced in treated mice, and cell proliferation in BAY 11-7085-treated mice. Both inhibitors produced a significant increase in apoptosis of endometriotic lesions, as assessed by active caspase-3 immunostaining and the TUNEL method. In conclusion, this is the first study to show constitutive NF-êB activation in peritoneal endometriotic lesions collected from women and during the initial development of endometriotic lesions in an animal model. Differential levels of NF-êB activation have been established between red and black lesions, providing more evidence on the distinct inflammatory status of these two types of peritoneal endometriotic lesions. In addition, this study offers further insight into the pathways implicated in NF-êB activation in endometriotic lesions, showing the involvement of p50/p65 dimers and suggesting participation of the canonical pathway of NF-êB activation. This study also demonstrates, for the first time, that NF-êB inhibition reduces the initial development of endometriotic lesions by inhibiting the inflammatory response and cell proliferation, and inducing apoptosis of endometriotic lesions. The NF-êB pathway therefore looks to be a promising therapeutic target for endometriosis prevention and treatment.
213

Establishment and characterization of a murine T-cell lymphoma/leukemia model

Johansson, Ann-Sofie January 2010 (has links)
Mouse models of human disease are valuable tools for studying pathogenesis and for evaluating novel therapies. T-cell lymphoma is a relatively rare disease in humans, affecting 100-150 persons yearly in Sweden. It exists in both aggressive and more indolent forms. We have established a mouse model for an aggressive T-cell lymphoma, the T-cell lymphoma/leukemia (TLL) mouse. In the present thesis, the TLL mouse model was characterized and used for experimental therapeutic and primary prevention studies. The TLL mouse was established unintentionally in our laboratory during work on VH-gene replacement in a “knock-in” mouse experimental setting. The generated chimeras all developed aggressive T-cell lymphomas affecting the lymphoid organs, lungs, kidneys and liver. The lymphoma phenotype segregated from the targeted locus and we could demonstrate the presence of Moloney murine leukemia virus (MMLV) in the germline of the affected mice. MMLV is a retrovirus known to induce T-cell lymphomas when inoculated in newborn mice.  We further characterized two TLL substrains; TLL-2 and TLL-14 carrying the proviral integrations on chromosomes 2 and 14 respectively. Significant differences were found between the substrains regarding lymphoma frequency and immunophenotype, the TLL-14 substrain developing tumors with higher frequency than TLL-2 and with a more mature immunophenotype. A transfer model was developed in which TLL cells could be readily transferred intravenously to syngenic recipients causing aggressive lymphomas. The transfer model was used in a therapeutic study where the selective COX-2 inhibitor celecoxib was evaluated as a single agent and in combination with the established anti-tumor agent cyclophosphamide. The study was based on results from other tumor types that have indicated celecoxib, originally an anti-inflammatory and analgetic drug, to have possible anti-tumor effects. In our TLL model, however, we could not demonstrate any benefit of celecoxib monotherapy or any additive effect to cyclophosphamide. Dietary fatty acids, in particular omega-3 fatty acids, have been a focus of public and scientific interest due to observed effects on the prevention of cardiovascular disease, cancer and inflammatory conditions. In addition, omega-3 fatty acids inhibit T-cell proliferation in vitro. We supplemented the diet of TLL mice with omega-3 and omega-6 fatty acids respectively and could demonstrate a significant delay in lymphoma onset between 5-8 months of age in the group receiving an omega-3 rich diet.
214

The Effects of the Female Reproductive Hormones on Ovarian Cancer Initiation and Progression in a Transgenic Mouse Model of the Disease

Laviolette, Laura 03 May 2011 (has links)
Ovarian cancer is thought to be derived from the ovarian surface epithelium (OSE), but it is often diagnosed during the late stages and therefore the events that contribute to the initiation and progression of ovarian cancer are poorly defined. Epidemiological studies have indicated an association between the female reproductive hormones and ovarian cancer etiology, but the direct effects of 17β-estradiol (E2), progesterone (P4), luteinizing hormone (LH) and follicle stimulating hormone (FSH) on disease pathophysiology are not well understood. A novel transgenic mouse model of ovarian cancer was generated that utilized the Cre/loxP system to inducibly express the oncogene SV40 large and small T-Antigen in the OSE. The tgCAG-LS-TAg mice developed poorly differentiated ovarian tumours with metastasis and ascites throughout the peritoneal space. Although P4 had no effect; E2 significantly accelerated disease progression in tgCAG-LS-TAg mice. The early onset of ovarian cancer was likely mediated by E2’s ability to increase the areas of putative preneoplastic lesions in the OSE. E2 also significantly decreased survival time in ovarian cancer cell xenografts. Microarray analysis of the tumours revealed that E2 mainly affects genes involved in angiogenesis and cellular differentiation, proliferation, and migration. These results suggest that E2 acts on the tumour microenvironment in addition to its direct effects on OSE and ovarian cancer cells. In order to examine the role of the gonadotropins in ovarian cancer progression, the tgCAG-LS-TAg mice were treated with 4-vinylcyclohexene-diepoxide (VCD) to induce menopause. Menopause slowed the progression of ovarian cancer due to a change in the histological subtype from poorly differentiated tumours to Sertoli tumours. Using a transgenic mouse model, it was shown that E2 accelerated ovarian cancer progression, while P4 had little effect on the disease. Menopause (elevated levels of LH and FSH) altered the histological subtype of the ovarian tumours in the tgCAG-LS-TAg mouse model. These results emphasize the importance of generating animal models to accurately recapitulate human disease and utilizing these models to develop novel prevention and treatment strategies for women with ovarian cancer.
215

Pharmakologische Inhibition von Rho-Kinase im Mausmodell der Amyotrophen Lateralsklerose / Pharmacological inhibition of Rho-kinase in the mouse model of amyotrophic lateral sclerosis

Günther, René 23 June 2015 (has links)
No description available.
216

Behavioral and Histological Effects of Traumatic Brain Injury on Alzheimer's Disease Transgenic Mice

Kellogg, Sara Leilani 01 January 2012 (has links)
The main objective of this study was to elucidate the possible mechanistic link between traumatic brain injury (TBI) and Alzheimer's disease (AD) using an animal model. We examined behavioral and histological effects of TBI in pre-symptomatic AD-transgenic mice (C57B6/SJL/SwissWebster/B6D2F1). In previous studies, these mice displayed AD-like behavioral deficits by 15-17 months of age and AD-like neuropathology as early as six months of age. To clarify the effects of TBI on these mice, the present study began when they were about three months of age and the study ended when they were about five months of age. As a control, non-transgenic (NT) mice were also evaluated in this study. To assess behavioral changes following TBI, all mice were subjected to 14 days of pre-TBI training of a spatial memory task, the radial arm water maze (RAWM). After training, there were no performance differences between AD-transgenic mice and NT mice. Then, half of the AD-transgenic mice, as well as half of the NT mice, received an experimental TBI at the right parietal cortex using a pneumatic impactor. The other half of these mice received sham surgery. At two, four, and six weeks after surgery, all mice were tested in the same water maze task and the numbers of errors were recorded. AD-transgenic mice with TBI made significantly more errors than AD-transgenic mice without TBI and NT mice regardless of TBI. Furthermore, deficits were observed at both two and six weeks after TBI surgery. To assess histological changes following TBI, we used a monoclonal antibody against beta-amyloid to detect AD-like plaques and an antibody against NeuN to evaluate the total neuronal loss. There were no clear group differences in terms of the beta amyloid expression pattern, although one AD-transgenic mouse with TBI showed AD-like beta amyloid plaques throughout the entire cortex and hippocampus. These results suggest that TBI precipitated behavioral deficits in a spatial memory task in pre-symptomatic AD-transgenic mice, but not control mice. Further studies are warranted for histological effects of TBI.
217

The Role of GSK-3 in Mammary Gland Development and Oncogenesis

Dembowy, Joanna 08 January 2014 (has links)
Glycogen synthase kinase-3 (GSK-3) alpha and beta are central regulators of key developmental pathways, including Wnt, Hedgehog and Notch, which control stem cell activities and cellular differentiation. Both forms of GSK-3 are also regulated by receptor tyrosine kinases via the PI3K/Akt growth-promoting pathway and are involved in feedback mechanisms that maintain signaling homeostasis. These signaling systems have critical functions in mammary gland development and aberrations in them have been implicated in breast cancer. However, the role of GSK-3 in breast oncogenesis is unclear. Here, I provide evidence that maintenance of appropriate GSK-3 activity is necessary for normal acinar morphogenesis of mammary cells in the ductal/alveolar epithelium. Inadequate GSK-3 levels result in enlarged structures that often lack hollow lumens and resemble early premalignant breast cancer lesions. A potential contribution for PI3K signaling to this phenotype was identified as a PI3K inhibitor partially reversed the observed morphological defects. Mammary epithelial cell (MEC) identity also requires modulation of signals through the Wnt/beta-catenin pathway. GSK-3-depleted mammary glands not only transdifferentiate into squamous epithelium but also develop highly proliferative adenosquamous carcinomas characterized by activated beta-catenin. Furthermore, beta-catenin appears to be required for both cell fate changes and tumorigenesis in the absence of GSK-3 function. Mammary tissues engineered to enable conditional deletion of beta-catenin in a GSK-3-null background also assumed an epidermoid cell fate with ensuing tumor formation albeit with a significantly longer latency and different histopathology. The metaplastic nature of tumors observed is similar to a rare yet aggressive form of human breast disease, metaplastic breast carcinomas (MBCs). Mammospheres (MS) generated from GSK-3 depleted MECs exhibited a less compact morphology compared to those with activated beta-catenin, which also exhibited an expansion of the CD24:CD49f double positive progenitor population and enhanced self-renewal. No MS were formed by MECs lacking GSK-3 and beta-catenin. ErbB2/Neu-mediated mammary tumor progression has been associated with Wnt/beta-catenin pathway activation. Loss of beta-catenin delayed tumor onset in a constitutively active ErbB2 mouse model but did not alter either the luminal characteristics of the ensuing tumors nor their metastatic potential. Collectively these studies indicate GSK-3 plays important roles in mammary gland function thereby suppressing mammary tumor formation.
218

The Role of GSK-3 in Mammary Gland Development and Oncogenesis

Dembowy, Joanna 08 January 2014 (has links)
Glycogen synthase kinase-3 (GSK-3) alpha and beta are central regulators of key developmental pathways, including Wnt, Hedgehog and Notch, which control stem cell activities and cellular differentiation. Both forms of GSK-3 are also regulated by receptor tyrosine kinases via the PI3K/Akt growth-promoting pathway and are involved in feedback mechanisms that maintain signaling homeostasis. These signaling systems have critical functions in mammary gland development and aberrations in them have been implicated in breast cancer. However, the role of GSK-3 in breast oncogenesis is unclear. Here, I provide evidence that maintenance of appropriate GSK-3 activity is necessary for normal acinar morphogenesis of mammary cells in the ductal/alveolar epithelium. Inadequate GSK-3 levels result in enlarged structures that often lack hollow lumens and resemble early premalignant breast cancer lesions. A potential contribution for PI3K signaling to this phenotype was identified as a PI3K inhibitor partially reversed the observed morphological defects. Mammary epithelial cell (MEC) identity also requires modulation of signals through the Wnt/beta-catenin pathway. GSK-3-depleted mammary glands not only transdifferentiate into squamous epithelium but also develop highly proliferative adenosquamous carcinomas characterized by activated beta-catenin. Furthermore, beta-catenin appears to be required for both cell fate changes and tumorigenesis in the absence of GSK-3 function. Mammary tissues engineered to enable conditional deletion of beta-catenin in a GSK-3-null background also assumed an epidermoid cell fate with ensuing tumor formation albeit with a significantly longer latency and different histopathology. The metaplastic nature of tumors observed is similar to a rare yet aggressive form of human breast disease, metaplastic breast carcinomas (MBCs). Mammospheres (MS) generated from GSK-3 depleted MECs exhibited a less compact morphology compared to those with activated beta-catenin, which also exhibited an expansion of the CD24:CD49f double positive progenitor population and enhanced self-renewal. No MS were formed by MECs lacking GSK-3 and beta-catenin. ErbB2/Neu-mediated mammary tumor progression has been associated with Wnt/beta-catenin pathway activation. Loss of beta-catenin delayed tumor onset in a constitutively active ErbB2 mouse model but did not alter either the luminal characteristics of the ensuing tumors nor their metastatic potential. Collectively these studies indicate GSK-3 plays important roles in mammary gland function thereby suppressing mammary tumor formation.
219

Rôle des macrophages contre Candida albicans chez la souris transgénique exprimant le génome du VIH-1

Bélanger-Trudelle, Emilie 09 1900 (has links)
La candidose oropharyngée (COP) constitue l’infection fongique opportuniste la plus fréquente chez les patients infectés au VIH-1. Malgré la profonde immunosuppression causée par le VIH-1, l’infection à Candida albicans demeure confinée au niveau de la muqueuse buccale sans dissémination aux organes profonds. La souris transgénique (Tg) CD4C/HIVMut exprimant le génome tronqué du VIH-1 présente, suite à l’inoculation orale de C. albicans, une COP chronique reproduisant fidèlement l’infection chez les patients séropositifs. Cette souris Tg a donc été utilisée afin de déterminer si les macrophages contribuent au confinement de C. albicans à la muqueuse buccale. Cette étude a permis de démontrer que i) les macrophages sont recrutés aux muqueuses buccale et gastrique en réponse au champignon malgré l’expression du transgène, ii) les macrophages de ces souris Tg présentent une polarisation vers un phénotype d’activation alternative et iii) la production de monoxyde d’azote par les macrophages des souris Tg n’est pas requise pour limiter la prolifération de Candida à la muqueuse buccale et pour restreindre sa dissémination aux organes profonds. Les macrophages ne semblent donc pas directement responsables de l’établissement de l’infection chronique à Candida chez la souris Tg CD4C/HIVMut. / Oropharyngeal candidiasis (OPC) is the most frequent opportunistic fungal infection among HIV-infected patients. Despite the profound immunosuppression caused by HIV-1, Candida albicans infection is limited to the oral epithelium and rarely disseminates to deep organs. The CD4C/HIVMut transgenic (Tg) mice, which expresses the truncated HIV-1 genome, developed a chronic OPC after oral inoculation with C. albicans that closely reproduces infection in seropositive patients. Here, we used this Tg mouse to investigate the contribution of macrophages in limiting candidiasis to the oral mucosa. This study shows that i) macrophages are recruited to the oral and gastric mucosa in response to C. albicans despite transgene expression, ii) the macrophages of this Tg mouse exhibited a polarization toward an alternatively activated phenotype and iii) nitric oxide production by these macrophages is dispensable for limiting chronic oral carriage and for preventing systemic dissemination of the fungi in these Tg mice. Overall, these result indicate that macrophage do not directly determine the susceptibility to chronic carriage of Candida in these CD4C/HIVMut Tg mice.
220

Airborne particulate matter and a western style diet as potential environmental factors in the pathogenesis of Inflammatory Bowel Disease

Kish, Lisa Unknown Date
No description available.

Page generated in 0.0597 seconds