1 |
Study of Multiport Antenna Systems on Terminals for WLAN : MIMO TechnologyEl Rashid, Mohamad January 2009 (has links)
<p>Using more than just on antenna can significantly speed up the data rate in a wireless communication system. These systems are commonly referred to as Diversity- and MIMO-systems. Due to tight volume restriction for the antennas, e.g. in a mobile phone, electromagnetic coupling between the antennas will degrade the capacity of the wireless system and lower the coverage.</p><p><p>In the proposed thesis, a thorough study of Ethertronics’ standard antennas will be established in which the antennas will be used in a multiport system, e.g. MIMO. The thesis will be strongly related to Ethertronics’ engagement in Chase and therefore also dependent on the latest progresses on MPA (Multiport Analyzer) developed in Chase. The thesis will result in a working methodology how to use MPA plus design-, location- and orientation rules for the standard antennas used in a multiport system.</p></p>
|
2 |
Study of Multiport Antenna Systems on Terminals for WLAN : MIMO TechnologyEl Rashid, Mohamad January 2009 (has links)
Using more than just on antenna can significantly speed up the data rate in a wireless communication system. These systems are commonly referred to as Diversity- and MIMO-systems. Due to tight volume restriction for the antennas, e.g. in a mobile phone, electromagnetic coupling between the antennas will degrade the capacity of the wireless system and lower the coverage. In the proposed thesis, a thorough study of Ethertronics’ standard antennas will be established in which the antennas will be used in a multiport system, e.g. MIMO. The thesis will be strongly related to Ethertronics’ engagement in Chase and therefore also dependent on the latest progresses on MPA (Multiport Analyzer) developed in Chase. The thesis will result in a working methodology how to use MPA plus design-, location- and orientation rules for the standard antennas used in a multiport system.
|
3 |
Interference Alignment with Distributed Antenna SystemsStarr, Jonathan Kenneth 17 February 2012 (has links)
This paper considers the combination of interference alignment and distributed antenna systems to improve the rate performance of cell-edge users in the cellular downlink. Because the power resources of each antenna in distributed antenna systems are geographically separated, practical implementations of distributed antenna systems require consideration of per-antenna power constraints on the transmit antennas. For this reason, we consider interference alignment with two types of power constraints: per-antenna power inequality constraints and per-antenna power equality constraints. On one hand, we show that interference alignment with per-antenna power inequality constraints is arbitrarily feasible using a technique of antenna power back-off but suffers from a loss of performance that we quantify in the case of Rayleigh-fading. On the other hand, we show that interference alignment with per-antenna power equality constraints does not suffer from a systematic loss of performance but yet requires more antennas to be feasible. We develop algorithms for implementing interference alignment with both types of constraints and numerically validate the results of our analysis. Finally, we demonstrate using the 3rd Generation Partnership Project spatial channel model in a cellular setting that interference alignment with distributed antenna systems has better rate performance than interference alignment with centralized antenna systems throughout the entire cell, especially near the cell boundary. / text
|
Page generated in 0.1181 seconds