1 |
Combining coordination mechanisms to improve performance in multi-robot teamsNasroullahi, Ehsan 09 March 2012 (has links)
Coordination is essential to achieving good performance in cooperative multiagent systems. To date, most work has focused on either implicit or explicit coordination mechanisms, while relatively little work has focused on the benefits of combining these two approaches. In this work we demonstrate that combining explicit and implicit mechanisms can significantly improve coordination and system performance over either approach individually. First, we use difference evaluations (which aim to compute an agent's contribution to the team) and stigmergy to promote implicit coordination. Second, we introduce an explicit coordination mechanism dubbed Intended Destination Enhanced Artificial State (IDEAS), where an agent incorporates other agents' intended destinations directly into its state. The IDEAS approach does not require any formal negotiation between agents, and is based on passive information sharing. Finally, we combine these two approaches on a variant of a team-based multi-robot exploration domain, and show that agents using a both explicit and implicit coordination outperform other learning agents up to 25%. / Graduation date: 2012
|
2 |
[pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO / [en] INTELLIGENT COORDINATION FOR MULTIAGENT BASED MODELS HIERARCHICAL NEURO-FUZZY WITH REINFORCEMENT LEARNING08 November 2018 (has links)
[pt] Esta tese consiste na investigação e no desenvolvimento de estratégias de coordenação inteligente que possam ser integradas a modelos neuro-fuzzy hierárquicos para sistemas de múltiplos agentes em ambientes complexos. Em ambientes dinâmicos ou complexos a organização dos agentes deve se adaptar a mudanças nos objetivos do sistema, na disponibilidade de recursos, nos relacionamentos entre os agentes, e assim por diante. Esta flexibilidade é um problema chave nos sistemas multiagente. O objetivo principal dos modelos propostos é fazer com que múltiplos agentes interajam de forma inteligente entre si em sistemas complexos. Neste trabalho foram desenvolvidos dois novos modelos inteligentes neuro-fuzzy hierárquicos com mecanismo de coordenação para sistemas multiagentes, a saber: modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com mecanismo de coordenação Market-Driven (RL-NFHP-MA-MD); e o Modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com modelo de coordenação por grafos (RL-NFHP-MA-CG). A inclusão de modelos de coordenação ao modelo Neuro-Fuzzy Hierárquicos com Aprendizado por Reforço (RL-NHFP-MA) foi motivada principalmente pela importância de otimizar o desempenho do trabalho em conjunto dos agentes, melhorando os resultados do modelo e visando aplicações mais complexas. Os modelos foram concebidos a partir do estudo das limitações existentes nos modelos atuais e das características desejáveis para sistemas de aprendizado baseados em RL, em particular quando aplicados a ambientes contínuos e/ou ambientes considerados de grande dimensão. Os modelos desenvolvidos foram testados através de basicamente dois estudos de caso: a aplicação benchmark do jogo da presa-predador (Pursuit- Game) e Futebol de robôs (simulado e com agentes robóticos). Os resultados obtidos tanto no jogo da presa-predador quanto no futebol de robô através dos novos modelos RL-NFHP-MA-MD e RL-NFHP-MA-CG para múltiplos agentes se mostraram bastante promissores. Os testes demonstraram que o novo sistema mostrou capacidade de coordenar as ações entre agentes com uma velocidade de convergência quase 30 por cento maior que a versão original. Os resultados de futebol de robô foram obtidos com o modelo RL-NFHP-MA-MD e o modelo RL-NFHP-MA-CG, os resultados são bons em jogos completos como em jogadas específicas, ganhando de times desenvolvidos com outros modelos similares. / [en] This thesis is the research and development of intelligent coordination strategies that can be integrated into models for hierarchical neuro-fuzzy systems of multiple agents in complex environments. In dynamic environments or complex organization of agents must adapt to changes in the objectives of the system, availability of resources, relationships between agents, and so on. This flexibility is a key problem in multiagent systems. The main objective of the proposed models is to make multiple agents interact intelligently with each other in complex systems. In this work we developed two new intelligent neuro-fuzzy models with hierarchical coordination mechanism for multi-agent systems, namely Neuro-Fuzzy Model with Hierarchical Reinforcement Learning with coordination mechanism Market-Driven (RL-NFHP-MA-MD), and Neuro-Fuzzy model with Hierarchical Reinforcement Learning with coordination model for graphs (RL-NFHP-MA-CG). The inclusion of coordination models to model with Neuro-Fuzzy Hierarchical Reinforcement Learning (RL-NHFP-MA) was primarily motivated by the importance of optimizing the performance of the work in all players, improving the model results and targeting more complex applications. The models were designed based on the study of existing limitations in current models and desirable features for learning systems based RL, in particular when applied to continuous environments and/or environments considered large. The developed models were tested primarily through two case studies: application benchmark game of predator-prey ( Pursuit-Game) and Soccer robots (simulated and robotic agents). The results obtained both in the game of predator-prey as in soccer robot through new models RL-NFHP-MA-MD and RL-NFHP-MA-CG for multiple agents proved promising. The tests showed that the new system showed ability to coordinate actions among agents with a convergence rate nearly 30 percent higher than the original version. Results soccer robot were obtained with model RL-NFHP-MA-MD–NFHP-RL and model-CG-MA, the results are good in games played in full as specific winning teams developed with other similar models.
|
3 |
Multi-agent coordination: fluid-inspired and optimal control approachesKingston, Peter 03 April 2012 (has links)
Multiagent coordination problems arise in a variety of applications, from satellite constellations and formation flight, to air traffic control and unmanned vehicle teams. We investigate the coordination of mobile agents using two kinds of approaches. In the first, which takes its inspiration from fluid dynamics and algebraic topology, control authority is split between mobile agents and a network of static infrastructure nodes - like wireless base stations or air traffic control towers - and controllers are developed that distribute their computation throughout this network. In the second, we look at networks of interconnected mechanical systems, and develop novel optimal control algorithms, which involve the computation of optimal deformations of time- and output- spaces, to achieve approximate formation tracking. Finally, we investigate algorithms that optimize these controllers to meet subjective criteria of humans.
|
Page generated in 0.2476 seconds