• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identificação automática de relações multidocumento / Automatic identification of multidocument relations

Maziero, Erick Galani 16 January 2012 (has links)
O tratamento multidocumento mostra-se indispensável no cenário atual das mídias eletrônicas, em que são produzidos diversos documentos sobre um mesmo tópico, principalmente quando se considera a explosão de informação permitida pela web. Tanto leitores quanto aplicações computacionais se beneficiam da análise discursiva multidocumento por meio da qual são explicitadas relações entre as porções dos documentos, por exemplo, relações de equivalência, contradição ou de contextualização de alguma informação. A fim de realizar o tratamento automático multidocumento, adota-se neste trabalho a teoria linguístico-computacional CST (Cross-document Structure Theory, Radev, 2000). Esse tipo de conhecimento multidocumento permite que (i) se tratem mais apropriadamente fenômenos como redundância, complementariedade e contradição de informações e, consequentemente, (ii) produzam-se sistemas melhores de processamento textual, como buscadores web mais inteligentes e sumarizadores automáticos. Neste trabalho é apresentada uma metodologia de identificação dessas relações explorando-se técnicas de aprendizado automático do paradigma tradicional e hierárquico. Para relações que não são passíveis de identificação por aprendizado automático foram desenvolvidas regras para sua identificação. Por fim, um parser é gerado contendo classificadores e regras / The multi-document treatment is essential in the current scenario of electronic media, in which many documents are produced about a same topic, mainly when considering the explosion of information allowed by the web. Both readers and computational applications are benefited by the discursive multi-document analysis, through which the relations (for example, equivalence, contradiction or background relations) among the portions of text are showed. In order to achieve the automatic multi-document treatment, the CST (Cross-document Structure Theory, Radev, 2000) is adopted in this work. This kind of knowledge allow (i) the appropriated treatment of phenomena like redundancy, complementarity and contradiction of information and, consequently, (ii) the production of better systems of text processing, as more intelligent web searchers and automatic summarizers. In this work, a methodology to identify these relations is presented exploring techniques of machine learning of the traditional and hierarchical paradigm. For relations with low frequency in the corpus, handcrafted rules were developed. Finally, a parser is generated containing classifiers and rules
2

Identificação automática de relações multidocumento / Automatic identification of multidocument relations

Erick Galani Maziero 16 January 2012 (has links)
O tratamento multidocumento mostra-se indispensável no cenário atual das mídias eletrônicas, em que são produzidos diversos documentos sobre um mesmo tópico, principalmente quando se considera a explosão de informação permitida pela web. Tanto leitores quanto aplicações computacionais se beneficiam da análise discursiva multidocumento por meio da qual são explicitadas relações entre as porções dos documentos, por exemplo, relações de equivalência, contradição ou de contextualização de alguma informação. A fim de realizar o tratamento automático multidocumento, adota-se neste trabalho a teoria linguístico-computacional CST (Cross-document Structure Theory, Radev, 2000). Esse tipo de conhecimento multidocumento permite que (i) se tratem mais apropriadamente fenômenos como redundância, complementariedade e contradição de informações e, consequentemente, (ii) produzam-se sistemas melhores de processamento textual, como buscadores web mais inteligentes e sumarizadores automáticos. Neste trabalho é apresentada uma metodologia de identificação dessas relações explorando-se técnicas de aprendizado automático do paradigma tradicional e hierárquico. Para relações que não são passíveis de identificação por aprendizado automático foram desenvolvidas regras para sua identificação. Por fim, um parser é gerado contendo classificadores e regras / The multi-document treatment is essential in the current scenario of electronic media, in which many documents are produced about a same topic, mainly when considering the explosion of information allowed by the web. Both readers and computational applications are benefited by the discursive multi-document analysis, through which the relations (for example, equivalence, contradiction or background relations) among the portions of text are showed. In order to achieve the automatic multi-document treatment, the CST (Cross-document Structure Theory, Radev, 2000) is adopted in this work. This kind of knowledge allow (i) the appropriated treatment of phenomena like redundancy, complementarity and contradiction of information and, consequently, (ii) the production of better systems of text processing, as more intelligent web searchers and automatic summarizers. In this work, a methodology to identify these relations is presented exploring techniques of machine learning of the traditional and hierarchical paradigm. For relations with low frequency in the corpus, handcrafted rules were developed. Finally, a parser is generated containing classifiers and rules

Page generated in 0.1112 seconds