• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture multi-échelle de matériaux polymères : de l’auto-assemblage à l’assemblage forcé / Multi-scale architecture of polymeric materials : from self-assembly to forced assembly

Montana garcia, Juan 18 December 2017 (has links)
Les copolymères à blocs (BCP) sont des macromolécules capables de s’auto-assembler produisant des morphologies bien définies à l’échelle nanométrique. Un certain nombre de leurs propriétés macroscopiques peuvent être largement modifiées par des effets de confinement à l’échelle moléculaire, mais aussi par des effets de cisaillement (l’orientation des structures et donc un comportement mécanique fortement anisotrope). L’une des technologies permettant d’étudier ces effets sur la structuration des BCP est la coextrusion multinanocouches, qui permet de produire à grande échelle des matériaux sous forme de films possédant deux ou plusieurs constituants organisées en milliers de couches alternées ayant chacune une épaisseur nanométrique. À l’aide de ce procédé, des films constitués du tribloc poly(méthacrylate de méthyle-b-butyle acrylate-b-méthacrylate de méthyle) et des homopolymères polyméthacrylate de méthyle, polystyrène et polycarbonate (ayant donc différentes interfaces) ont été fabriqués en variant la composition du mélange et les conditions de coextrusion afin d’obtenir différentes épaisseurs du film (et donc différentes épaisseurs de couche). Une caractérisation multi-échelle a été effectuée en couplant différentes techniques, notamment AFM, MET (après une étape préalable de marquage) et SAXS. Elle a permis d’identifier les structures locales au sein des couches et de mieux comprendre la relation procédé-structure-propriétés suite à des essais en traction uni-axiale montrant de meilleures propriétés dans le cas de structures multicouches. Une faible stabilité thermique, à de temps comparables à ceux du procédé, a montré une influence sur la structuration de ce type de BCP. Nous avons mis en évidence un changement dans la morphologie du tribloc à partir d’une structure lamellaire, lorsque le matériau se trouve dans un état proche de l’équilibre thermodynamique, vers une structure cylindrique au sein du système multicouche et maintenue, quelle que soit l’épaisseur de couche, à grande distance. La maitrîse des procédés de transformation de matériaux à base de polymère à l’échelle micro ou nanométrique prend ainsi toute son importance afin de mieux contrôler, dans le cas des BCP, la structuration lors d’une production à grande échelle de matériaux hiérarchisés constitués de ces matériaux, ce qui influence fortement leurs propriétés macroscopiques. / Block copolymers (BCP) have proven to be of great interest, especially for their ability to spontaneously self-assemble in ordered and well-defined nanostructures. Some of their macroscopic properties can be altered by physical effects such as confinement (constraining domains at molecular scale) or shear (predominant orientation of domains with anisotropic mechanical response). Here, the study of these effects over the BCP structuration is achieved by using an industrially scalable technique, nanolayer coextrusion, which allows fabrication of macroscopic films made of thousands of alternating layers with individual thickness tuned down to a few tens of nanometers. Films are then coextruded using the triblock : poly(methyl methacrylate-b-butyl acrylate-b-methyl methacrylate) and the polymers : polymethyl methacrylate, polystyrene and polycarbonate (having different interfaces) by varying weight proportions and process parameters to target different layer thicknesses. A multi-scale characterization by coupling different technics as AFM, TEM (after samples staining) and SAXS allowed the local identification of nano-domains and the better understanding of process-structures-properties relation as a result of tensile tests showing improved mechanical behavior for these films. A low thermic stability for comparable process times showed a clear influence over structuration of this kind of BCP. We have observed a change in the triblock morphology from lamellar structures, when it is a close to thermodynamic equilibrium state, to cylindrical structures within the multilayer system which is maintained over long distances indistinct of layer thickness. The well understanding of the forming process parameters to create polymer-based materials at micro- or nanoscale scale is therefore an important factor in order to control nano-structures during a large-scale production of hierarchized materials consisting of BCP, which could strongly influence their macroscopic properties.

Page generated in 0.0661 seconds