Spelling suggestions: "subject:"multinomial"" "subject:"multinodal""
1 |
[en] COUPLING LIMIT STATES TO STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINES AND STRUCTURES / [pt] ACOPLAMENTO DE ESTADOS LIMITES NA AVALIAÇÃO DA CONFIABILIDADE ESTRUTURAL DE DUTOS E ESTRUTURASJOSE DE JESUS LEAL CARVAJALINO 10 June 2013 (has links)
[pt] Neste trabalho são apresentados conceitos usados na avaliação da
confiabilidade estrutural com o objetivo de calcular a probabilidade de falha de
uma estrutura enquanto ela atende aos fins para os quais foi projetada durante sua
vida útil. Uma metodologia de análise de confiabilidade estrutural foi
desenvolvida, tendo como foco os dutos de transporte de óleo e gás natural,
embora possa ser aplicada a diferentes equipamentos. A metodologia permite o
acoplamento de diferentes eventos que possam ocorrer na vida de uma estrutura.
Entende-se por eventos a aparição de defeitos por diferentes vias: processos
corrosivos, danos por terceiros, operações incorretas, etc., ou, eventos
relacionados à inspeção da estrutura, duto ou equipamento. Cada evento é descrito
por uma função de estado limite do tipo capacidade x demanda. O acoplamento
desses estados limites é dado pela união ou interseção deles (sistemas em série,
paralelo, ou combinação deles). A análise é reduzida ao cálculo da confiabilidade
de um sistema, cuja solução é feita usando a função padrão multinormal e os
métodos de primeira ordem FORM, para o cálculo da probabilidade de falha de
cada estado limite, e os métodos do produto das probabilidades condicionais PCM
e I-PCM, para o cálculo da probabilidade de falha do sistema através da integral
multinormal. As informações obtidas dos resultados desta metodologia podem ser
úteis na geração de planos de inspeção, análises preditivas e análises de risco, para
contribuir na tomada de decisões sobre prazos e técnicas de inspeção a serem
empregadas. A metodologia mencionada acima pode ser implementada em um programa de gerenciamento de confiabilidade estrutural, o qual deve ser capaz de
acoplar todos os eventos, os dados conhecidos, as incertezas próprias dos dados e
as novas informações ao longo da vida útil de uma estrutura. / [en] This work presents concepts used in the assessment of structural reliability
in order to calculate the probability of failure of a structure as it serves the
purposes for which it was designed during their lifetime. A methodology for
structural reliability analysis has been developed for the pipeline transportation of
oil and natural gas, although, this methodology can be applied to different
equipment. The methodology allows the coupling of different events that may
occur in the life of a structure. The events can be understood as defects by
corrosion, damage by third parties, incorrect operations, etc. or events related to
inspection of the structure, pipeline or equipment. Each event is described by a
limit state function of the type capacity vs. demand. The coupling of these states
limit is given by the union or intersection of these (series systems, parallel
systems, or combination of them). The analysis is reduced to system reliability
computation and the solution is reached using the integration of the standard
multinormal function and first order reliability methods- FORM to calculate the
probability of failure of system. The multinormal integral is computation using the
product of conditional marginal method-PCM and the improvement of PCM
method. The results obtained of this methodology may be useful in the generation
of inspection plans and in predictive and risk analysis. The methodology
described can be implemented in a structural reliability management program. The
program should be able to coupling all events that occur in the lifetime of a
pipeline or structure.
|
2 |
Modèle de mélange de lois multinormales appliqué à l'analyse de comportements et d'habiletés cognitives d'enfants.Giguère, Charles-Édouard 11 1900 (has links)
Cette étude aborde le thème de l’utilisation des modèles de mélange de lois pour analyser des données de comportements et d’habiletés cognitives mesurées à plusieurs moments au cours du développement des enfants. L’estimation des mélanges de lois multinormales en utilisant l’algorithme EM est expliquée en détail. Cet algorithme simplifie beaucoup les calculs, car il permet
d’estimer les paramètres de chaque groupe séparément, permettant ainsi de modéliser plus facilement la covariance des observations à travers le temps. Ce dernier point est souvent mis de côté dans les analyses de mélanges. Cette étude porte sur les conséquences d’une mauvaise spécification de la covariance sur l’estimation du nombre de groupes formant un mélange. La conséquence principale est la surestimation du nombre de groupes, c’est-à-dire qu’on estime des groupes qui n’existent pas. En particulier, l’hypothèse d’indépendance des observations à travers le temps lorsque ces dernières étaient corrélées résultait en l’estimation de plusieurs groupes qui n’existaient pas. Cette surestimation du nombre de groupes entraîne aussi une surparamétrisation, c’est-à-dire qu’on utilise plus de paramètres qu’il n’est nécessaire pour modéliser les données. Finalement, des modèles de mélanges ont été estimés sur des données de comportements et d’habiletés cognitives. Nous avons estimé les mélanges en supposant d’abord une structure de covariance puis l’indépendance. On se rend compte que dans la plupart des cas l’ajout d’une structure de covariance a pour conséquence d’estimer moins de groupes et les résultats sont plus simples et plus clairs à interpréter. / This study is about the use of mixture to model behavioral and cognitive data measured repeatedly across development in children. Estimation of multinormal mixture models using the EM algorithm is explained in detail. This algorithm simplifies computation of mixture models because the parameters in each group are estimated separately, allowing to model covariance across time more easily. This last point is often disregarded when estimating mixture models. This study focused on the consequences of a misspecified covariance matrix when estimating the number of groups in a mixture. The main consequence is an overestimation of the number of groups, i.e. we estimate groups that do not exist. In particular, the independence assumption of the observations across time when they were in fact correlated resulted in estimating many non existing groups. This overestimation of the number of groups also resulted in an overfit of the model, i.e. we used more parameters than necessary. Finally mixture models were fitted to behavioral and cognitive data. We fitted the data first assuming a covariance structure, then assuming independence. In most cases, the analyses conducted assuming a covariance structure ended up having fewer groups and the results were simpler and clearer to interpret.
|
3 |
Modèle de mélange de lois multinormales appliqué à l'analyse de comportements et d'habiletés cognitives d'enfantsGiguère, Charles-Édouard 11 1900 (has links)
No description available.
|
Page generated in 0.0376 seconds