• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 115
  • 45
  • 40
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 571
  • 169
  • 118
  • 96
  • 80
  • 79
  • 78
  • 72
  • 70
  • 65
  • 64
  • 61
  • 59
  • 57
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Multiscale Friction Using A Nested Internal State Variable Model For Particulate Materials

Stone, Tonya Williams 02 May 2009 (has links)
In the current study we use a multiscale computational methodology to develop an internal state variable model that captures frictional effects during the compaction of particulate materials. Molecular dynamics simulations using EAM potentials were performed to model the contact behavior of spherical nickel nanoparticles. Simulation results for models consisting of various particle sizes and contact angles were compared to quantify the length scale effects of friction. The influence of friction on the microstructure was shown from the nucleation of dislocations near the interface region during sliding. By using an internal state variable theory to couple the microstructural changes due to friction observed at the nanoscale to a macroscopic rate-independent plasticity model, a multiscale friction model that captures the deformation behavior due to dislocations and interparticle friction was developed. The internal state variable friction equation is a function of the volume-per-surface-area parameter and can adequately represent all length scales of importance from the nanoscale to the microscale. The kinematics was modified by including a frictional component in the multiplicative decomposition of the deformation gradient in order to account for the frictional surface effects due to sliding, as well as frictional hardening/softening within the particles. The friction formulation was extended to the macroscale continuum model by determining the rate of change of the friction angle of the powder aggregate based on the evolution of the friction internal state variable. The constitutive model was coupled with the Bammann-Chiesa-Johnson (BCJ) rate-dependent plasticity model to capture the deformation behavior of the particles.
92

Multiscale Molecular Simulations of Cross-sequence Interactions between Amyloid Peptides

Zhang, Mingzhen January 2017 (has links)
No description available.
93

Formal Analysis of Automated Model Abstractions under Uncertainty: Applications in Systems Biology

Ghosh, Krishnendu 19 April 2012 (has links)
No description available.
94

Bayesian Parameter Estimation and Inference Across Scales

Callahan, Margaret D. 30 May 2016 (has links)
No description available.
95

A Multiscale Study of the Role of Environmental Variability on the Diversity and Abundance of Rock Pool Communities / The Role of Environmental Variability on Diversity

Reid, Lesley 09 1900 (has links)
One of the main goals of ecological research is to understand the factors that determine how communities are structured over both space and time. However, our understanding of any system is largely a function of the scale at which we make our observations. Thus, the mechanisms that determine patterns in community structure are likely to change depending on the scale of observation. This thesis explores how environmental variability affects community structure and species performance, and how the resulting patterns change as a function of scale. Specifically, I asses the role of variability in temperature, oxygen, pH, and chloride, on species richness, abundance, diversity, and species performance, at three observational scales: micro-spatial, local-temporal, and landscape-temporal scales, in 49 natural erosional rock pool microcosms, located on the northern. coast of Jamaica. I found that while environmental variability was not a primary determinant of species richness or abundance, it did play a role in determining species compositions in the pools. I also show that community patterns are strongly affected by the scale of observation. Recognizing scale-dependent changes in community patterns is a prerequisite for predicting the consequences of changes in ecological systems induced by variability in abiotic factors. / Thesis / Master of Science (MS)
96

Towards a Multiscale, Spatially Explicit Analysis of the Littoral Zone Macrobenthos Along the North Shore of Hamilton Harbour / Macrobenthos of Hamilton Harbour

Conrad, Mark Stephen 12 1900 (has links)
Macrobenthos and macrophytes of the north shore littoral zone of Hamilton Harbour were extensively sampled in late August 1994. Benthic community structure is described, including the presence of several oligochaete and chironomid genera previously unreported in the harbour. Community structure is scale dependent and identifying which spatial scales contribute important structure is a useful step in determining which environmental factors have the greatest impact on the benthic community. This information can be used to plan efficient benthos monitoring programs, and to construct spatially explicit models of the harbour ecosystem. Most of the variation in the data set (approx. 88%) is due to small scale patchiness, probably related to patchiness of the macrophyte community and sediment grain size, as well as biotic processes such as predation and competition. Large scale structure is related to a water depth gradient, probably involving changes in dissolved oxygen concentrations, light attenuation, and sediment grain size. Macrophytes also respond to this gradient. There is little important structuring of the benthos community at intermediate spatial scales. Models of benthic communities in the harbour must deal with spatial pattern effects such as autocorrelation. Additionally, spatial patterns provide information useful for understanding causes of community structure. A method is developed for the spatial pattern analysis of the benthic community data, which allows the simultaneous evaluation of patterns at various scales, with minimal mixing of information between scales. / Thesis / Master of Science (MS)
97

Peptide Self-Assembly from the Molecular to the Macroscopic Scale at Standard Conditions

Athamneh, Ahmad Ibrahim 04 January 2011 (has links)
This dissertation attempts to address the problem of how to prepare protein-based materials with the same level of order and precision at the molecular level similar to the structures we find in nature. It is divided into two parts focusing on feedstock and processing. Part one is devoted to discussing the use of agricultural proteins as a feedstock for material production. Particularly, it focuses on the effect of hydrogen bonding, or lack thereof, between proteins as mediated by hydration or plasticization. The effect of varying plasticizer (glycerol) levels on mechanical properties of a series of proteins is discussed in the context of primary and secondary structure of these proteins. We have found that the extent to which a protein can be plasticized is dependent on its molecular and higher order structure and not simply molecular weight, as it was often assumed in previous studies. The second part of the dissertation focuses on the study of self-assembly as a way to make useful peptide-based materials. There are major efforts underway to study protein self-assembly for various medical and industrial reasons. Despite huge progress, most studies have focused on nanoscale self-assembly but the crossover to the macroscopic scale remains a challenge. We show that peptide self-assembly into macroscopic fibers is possible in vitro under physiological conditions. We characterize the fibers and propose a mechanism by which they form. The macroscopic fibers self-assemble from a combination of β- and α-peptides and are similar to other naturally-occurring systems in which templated self-assembly is used to create functional peptide materials. Finally, the ability to control macroscopic properties of the fiber by varying the ratio of constituent peptides is demonstrated. Owing to the richness of the amino acid building blocks, peptides are highly versatile structural and functional building blocks. The ability to extend and control peptide self-assembly over multiple length scales is a significant leap toward incorporating peptide materials into dynamic systems of higher complexity and functionality. / Ph. D.
98

Multiscale Modeling of friction Mechanisms with Hybrid Methods

Wang, Xinfei 13 November 2014 (has links)
This thesis presents a simulation model of sliding process of friction, which combines Newtonian particle dynamics and finite element method to study friction mechanisms that bridging micro and macro scales. In the thesis, it first reviews the importance of studying pavement friction that is associated to safety of drivers, society economics and environmental impact. Then, the hybrid numerical methods of Newtonian particle dynamics and finite element method have been introduced, and the rules to bridge these two methods also have been discussed for solid material that assumes the forces and displacements are continuous at the interface of these two methods. The fundamental theories of friction mechanisms are built upon the surface roughness, adhesion and deformation at the contact between two surfaces. At last, the simulation model of sliding process is presented with the hybrid method, and its visualization and result analysis has been given. At the same time, this thesis also includes the procedures of establishing the simulation of the hybrid methods with C++ programming like the program framework, structure and the major pieces of the program. / Master of Science
99

Next Generation Multifunctional Composites for Impact, Vibration and Electromagnetic Radiation Hazard Mitigation

Tehrani, Mehran 16 November 2012 (has links)
For many decades, fiber reinforced polymers (FRPs) have been extensively utilized in load-bearing structures. Their formability and superior in-plane mechanical properties have made them a viable replacement for conventional structural materials.  A major drawback to FRPs is their weak interlaminar properties (e.g., interlaminar fracture toughness). The need for lightweight multifunctional structures has become vital for many applications and hence alleviating the out-of-plane mechanical (i.e., quasi-static, vibration, and impact) and electrical properties of FRPs while retaining minimal weight is the subject of many ongoing studies. The primary objective of this dissertation is to investigate the fundamental processes for developing hybrid, multifunctional composites based on surface grown carbon nanotubes (CNTs) on carbon fibers' yarns. This study embraces the development of a novel low temperature synthesis technique to grow CNTs on virtually any substrate. The developed method graphitic structures by design (GSD) offers the opportunity to place CNTs in advantageous areas of the composite (e.g., at the ply interface) where conventional fiber architectures are inadequate. The relatively low temperature of the GSD (i.e. 550 C) suppresses the undesired damage to the substrate fibers. GSD carries the advantage of growing uniform and almost aligned CNTs at pre-designated locations and thus eliminates the agglomeration and dispersion problems associated with incorporating CNTs in polymeric composites. The temperature regime utilized in GSD is less than those utilized by other synthesis techniques such as catalytic chemical vapor deposition (CCVD) where growing CNTs requires temperature not less than 700 °C. It is of great importance to comprehend the reasons for and against using the methods involving mixing of the CNTs directly with the polymer matrix, to either fabricate nanocomposites or three-phase FRPs. Hence, chapter 2 is devoted to the characterization of CNTs-epoxy nanocomposites at different thermo-mechanical environments via the nanoindentation technique. Improvements in hardness and stiffness of the CNTs-reinforced epoxy are reported. Long duration (45 mins) nanocreep tests were conducted to study the viscoelastic behavior of the CNT-nanocomposites. Finally, the energy absorption of these nanocomposites is measured via novel nanoimpact testing module. Chapter 3 elucidates a study on the fabrication and characterization of a three phase CNT-epoxy system reinforced with woven carbon fibers. Tensile test, high velocity impact (~100 ms⁻¹), and dynamic mechanical analysis (DMA) were employed to examine the response of the hybrid composite and compare it with the reference CFRP with no CNTs. Quasi-static shear punch tests (QSSPTs) were also performed to determine the toughening and damage mechanisms of both the CNTs-modified and the reference CFRP composites during transverse impact loading. The synthesis of CNTs at 550 C via GSD is the focus of chapter 4. The GSD technique was adjusted to grow Palladium-catalyzed carbon filaments over carbon fibers. However, these filaments were revealed to be amorphous (turbostratic) carbon.  Plasma sputtering was utilized to sputter nickel nano-films on the surface of the substrate carbon fibers. These films were later fragmented into nano-sized nickel islands from which CNTs were grown utilizing the GSD technique.  The structure and morphology of the CNTs are evaluated and compared to CNTs grown via catalytic chemical vapor deposition (CCVD) over the same carbon fibers. Chapter 5 embodies the mechanical characterization of composites based on carbon fibers with various surface treatments including, but not limited to, surface grown CNTs. Fibers with and without sizing were subjected to different treatments such as  heat treatment similar to those encountered during the GSD process, growing CNTs on fabrics via GSD and CCVD techniques, sputtering of the fibers with a thin thermal shield film of SiO₂ prior to CNT growth, selective growth of CNTs following checkerboard patterns, etc. The effects of the various surface treatments (at the ply interfaces) on the on-axis and off-axis tensile properties of the corresponding composites are discussed in this chapter. In addition, the DMA and impact resistance of the hybrid CNT-CFRP composites are measured and compared to the values obtained for the reference CFRP samples. While the GSD grown CNTs accounted for only 0.05 wt% of the composites, the results of this chapter contrasts the advantages of the GSD technique over other methods that incorporate CNTs into a CFRP (i.e. direct growth via CCVD and mixing of CNTs with the matrix). Understanding the behavior of the thin CFRPs under impact loadings and the ability to model their response under ballistic impact is essential for designing CFRP structures.  A precise simulation of impact phenomenon should account for progressive damage and strain rate dependent behavior of the CFRPs. In chapter 6, a novel procedure to calibrate the state-of-the-art MAT162 material model of the LS-DYNA finite element simulation package is proposed. Quasi-static tensile, compression, through thickness tension, and in-plane Isopescu shear tests along with quasi-static shear punch tests (QSSPTs) employing flat cylindrical and spherical punches were performed on the composite samples to find 28 input parameters of MAT162. Finally, the capability of this material model to simulate a transverse ballistic impact of a spherical impactor with the thin 5-layers CFRP is demonstrated. It is hypothesized that the high electrical conductivities of CNTs will span the multifunctionality of the hybrid composites by facilitating electromagnetic interference (EMI) shielding. Chapter 6 is devoted to characterizing the electrical properties of hybrid CNT-fiberglass FRPs modified via GSD method. Using a slightly modified version of the GSD, denser and longer CNTs were grown on fiberglass fabrics.  The EMI shielding performance of the composites based on these fabrics was shown to be superior to that for reference composites based on fiberglass and epoxy. To better apprehend the effect of the surface grown CNTs on the electrical properties of the resulting composites, the electrical resistivities of the hybrid and the reference composites were measured along different directions and some interesting results are highlighted herein. The work outlined in this dissertation will enable significant advancement in protection methods against different hazards including impact, vibrations and EMI events. / Ph. D.
100

Analysis of Composites using Peridynamics

Degl'Incerti Tocci, Corrado 07 February 2014 (has links)
Since the last century a lot of effort has been spent trying to analyze damage and crack evolution in solids. This field is of interest because of the many applications that require the study of the behavior of materials at the micro- or nanoscale, i.e. modeling of composites and advanced aerospace applications. Peridynamics is a recently developed theory that substitutes the differential equations that constitute classical continuum mechanics with integral equations. Since integral equations are valid at discontinuities and cracks, peridynamics is able to model fracture and damage in a more natural way, without having to work around mathematical singularities present in the classical continuum mechanics theory. The objective of the present work is to show how peridynamics can be implemented in finite element analysis (FEA) using a mesh of one-dimensional truss elements instead of 2-D surface elements. The truss elements can be taken as a representation of the bonds between molecules or particles in the body and their strength is found according to the physical properties of the material. The possibility implementing peridynamics in a finite element framework, the most used method for structural analysis, is critical for expanding the range of problems that can be analyzed, simplifying the verification of the code and for making fracture analysis computationally cheaper. The creation of an in-house code allows for easier modifications, customization and enrichment if more complex cases (such as multiscale modeling of composites or piezoresistive materials) are to be analyzed. The problems discussed in the present thesis involve plates with holes and inclusions subjected to tension. Displacement boundary conditions are applied in all cases. The results show good agreement with theory as well as with empirical observation. Stress concentrations reflect the behavior of materials in real life, cracks spontaneously initiate and debonding naturally happens at the right locations. Several examples clearly show this behavior and prove that peridynamics is a promising tool for stress and fracture analysis. / Master of Science

Page generated in 0.0573 seconds