1 |
Effet de la variabilité microstructurale sur le comportement d’un composite UD verre/PA11 : de la caractérisation expérimentale à la modélisation multi-échelle / Effect of the microstructural variability on the behaviour of a UD glass/PA11 composite : from experimental characterization to multiscale modellingPoulet, Pierre-Alexis 24 November 2017 (has links)
Dans le domaine des transports, l’allègement des structures est une préoccupation de l’industrie moderne. À cet effet, les matériaux composites unidirectionnels à matrice polymère sont de plus en plus utilisés pour des applications structurelles. Pour mener à bien cette transition technologique, les campagnes expérimentales laborieuses et onéreuses sont progressivement réduites, laissant la place à une caractérisation “numérique“ supplétive et ciblée. C’est dans ce contexte que s’inscrit ce travail de thèse. Le matériau considéré est un composite à matrice thermoplastique (le Polyamide 11) et à renforts unidirectionnels de fibres de verre. Sous sollicitations mécaniques, la variabilité microstructurale, à l’échelle des constituants, engendre des contraintes multi-axiales importantes qu’il est nécessaire d’évaluer. C’est notamment le cas dans les zones où la matrice est confinée par le renfort. Étudier l’échelle microscopique se révèle primordial pour comprendre et simuler les mécanismes de déformation spécifiques à la matrice thermoplastique.En première partie, une campagne expérimentale est réalisée sur le polymère thermoplastique massif. Des éprouvettes axisymétriques entaillées sont sollicitées en traction monotone et suivies in situ en tomographie aux rayons X. Un phénomène de cavitation est observé. Les grandeurs macroscopiques (ouverture d’entaille, réduction diamétrale. . .) mais aussi microscopiques (évolution des cavités considérées en cluster et individuellement)sont analysées de manières qualitative et quantitative.Un modèle Éléments Finis poro-viscoplastique est ensuite proposé et calibré afin de prendre en compte les mécanismes spécifiques de déformation et d’endommagement du polymère observés expérimentalement. La seconde partie est consacrée à l’étude numérique du matériau composite unidirectionnel. La représentation de la microstructure réelle est permise par la génération de cellules périodiques aléatoires et représentatives(vis-à-vis de descripteurs morphologiques). Des calculs micromécaniques sont alors menés et permettent d’accéder aux mécanismes de déformation, aux grandeurs locales et au comportement mécanique du composite (en élasticité linéaire et au-delà). Une attention particulière est portée à la représentativité des grandeurs calculées. Enfin, une démarche multi-échelle est proposée. Une homogénéisation numérique par un milieu de substitution permet de réaliser des calculs de structure tandis qu’une relocalisation sur certains points critiques donne accès aux grandeurs locales. / In the field of transport, research for reducing the weight of structures is a continuing preoccupation for the industry. For this reason, polymer matrix composite materials are being used increasingly for structural applications. To succeed with this technological transition numerical modelling plays a significant role as cumbersome and costly experimental campaigns are being limited. This is the background to this thesis work.The material considered is composed of a thermoplastic resin (Polyamide 11) with a unidirectional glass fibre reinforcement. Under mechanical loadings, the microsctructural variability, at the constituent length scale, leads to important multi-axial stresses that need to be evaluated. This is notably true in zones where the matrix is particularly confined. Studying the microscopic scale is of paramount importance in order to understand and simulate specific strain mechanisms of the thermoplastic resin.In the first part, an experimental campaign has been conducted on the plain thermoplastic polymer. Axisymetric notched specimens were tested under uniaxial monotonous tension and monitored with in-situ X-ray synchrotron computed tomography. A cavitation phenomenon has been observed. Not only macroscopic quantities (notch opening displacement, reduction in diameter…) but also microscopic (evolution of voids considered as a cluster or individually) have been analyzed both quantitatively and qualitatively. A finite element model is subsequently proposed and calibrated to take into account the specific strain deformations and damage experimentally observed with this polymer.The second part is dedicated to a numerical study of the unidirectional composite material. A representation of the real microstructure has been tackled with the generation of virtual random and periodic cells in a way that nevertheless is truely morphologically representative. Micromechanics computations have been carried out and give access to strain mechanisms, to local quantities and to the composite material behaviour (in linear elasticity and beyond). Special attention is paid to the representativeness of the computed quantities. Finally, a multiscale approach is proposed. Structural computations have been possible due to a numerical homogenization based on an homogeneous equivalent medium whilst a relocalisation gives access to local quantities in critical zones of the structure.
|
2 |
Simulation numérique multi-échelles du comportement mécanique des alliages de titane bêta-métastable Ti5553 et Ti17 / Numerical multiscale simulation of the mechanical behavior of beta-metastable titanium alloys Ti5553 and Ti17Martin, Guillaume 10 December 2012 (has links)
Le but de ce travail de thèse est de mieux comprendre les mécanismes de déformation à température ambiante dans les alliages de titane bêta-métastable Ti17 et Ti5553. Les microstructures étudiées sont composées de grains bêta transformé, dans lesquels la phase alpha peut précipiter, selon les relations de Burgers, sous la forme de douze variants différents. Une approche multi-échelles est donc préconisée avec trois niveaux représentatifs: macroscopique, mésoscopique (ex-grains bêta), et microscopique (variants alpha et matrice bêta de chaque grain). Différents modèles à champs moyens sont adaptés pour reproduire le comportement mécanique du Ti17 et du Ti5553. Ces modèles impliquent deux transitions d'échelle, et sont basés sur l'homogénéisation des comportements locaux, avec plusieurs manières de représenter les interactions intergranulaires. Les relations entre microstructures et propriétés mécaniques sont également considérées. Les modèles les plus complexes développés dans cette étude vont permettre de simuler l'anisotropie élastique et l'écoulement visqueux de chaque variant alpha (hcp) et de chaque matrice bêta (bcc), en employant la plasticité cristalline avec des écrouissages de type cinématique et isotrope. L'identification des paramètres matériaux est faite à partir d'une vaste base de données expérimentale provenant du projet PROMITI. Pour comprendre le rôle de chaque phase dans le processus de déformation, un calcul EF a également été fait afin de reproduire l'essai de traction sur une très fine éprouvette plate. Dans cette étude, le niveau mésoscopique est explicitement représenté en reprenant fidèlement la géométrie et l'orientation cristallographique de chaque grain bêta transformé. Des comparaisons entre expérience et simulation sont faites à l'échelle macroscopique pour les courbes contrainte - déformation, ainsi qu'au niveau mésoscopique, en considérant les champs de déplacement hors-plan et les champs de déformation. / The purpose of this PhD work is to investigate deformation mechanisms at room temperature in beta-metastable titanium alloys Ti17 and Ti5553. Studied microstructures are composed of beta-grains, in which alpha phase can precipitate under twelve different variants according to Burgers relationship. A multiscale approach is then proposed with three levels to consider: macroscopic, mesoscopic (prior beta grains) and microscopic (alpha variants and beta matrix of each grain). Different mean field models are adapted to depict Ti17 and Ti5553 mechanical behaviors. These models are based on the two scale-transition homogenization of local behaviors, with various ways of representing intergranular interactions. Relationships between microstructures and mechanical properties are also considered. The most advanced micromechanical models developed in this work depict elastic anisotropy and viscoplastic flow of each hcp alpha variant and each bcc beta matrix, using crystal plasticity with kinematic and isotropic hardening. Identification of material parameters is done using a large experimental database from PROMITI project. To understand the role of each phase in the deformation process, a FE computation was also made to reproduce the uniaxial tensile test of a very thick micro-specimen. In this study, the mesoscopic scale is explicitly represented: each beta grain has a real geometry and crystallographic orientation, according to a measured EBSD map in SEM. Comparisons between experiment and the numerical simulation are made on macroscopic stress - strain curves as well as on the mesoscopic scale, by considering out-of-plane displacement and strain fields.
|
Page generated in 0.0633 seconds