• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The application of the multisolute osmotic virial equation to cryobiology

Prickett, Richelle Catherine 06 1900 (has links)
Mathematical modelling of cellular osmotic responses to low temperatures is being increasingly used to overcome obstacles in the successful cryopreservation of cells and tissues. Current cryobiological models often contain simplifying assumptions regarding the solution behaviour of the complicated, multisolute intra- and extra-cellular solutions. In order to obtain more accurate predictions of cryobiological outcomes, equations derived from thermodynamic principles that more accurately describe the biological solution behaviour could be used to greatly advance the design of novel cryopreservation protocols. The general hypothesis of this thesis is that the application of the multisolute osmotic virial equation, with mixing rules derived from thermodynamic first principles, to solutions of interest in cryobiology will result in more accurate predictions of the multisolute solution behaviour, which will lead to improved cryobiological modelling and increased understanding of cellular responses to cryopreservation. Specifically, this thesis demonstrates that the osmotic virial coefficients, obtained from single-solute solution data, can be used in the multisolute osmotic virial equation to accurately predict the multisolute solution behaviour, without the need to fit multisolute solution data. The form of the multisolute osmotic virial equation proposed in this thesis was used to predict the solution behaviour of a range of multisolute solutions of interest in cryobiology. The equation commonly used in cryobiology to describe cellular osmotic equilibrium is based on ideal, dilute solution assumptions. In this thesis, a non-ideal osmotic equilibrium equation was derived and, combined with the multisolute osmotic virial equation, used to more accurately predict the osmotic equilibrium of human erythrocytes. The improved equations proposed in this thesis were combined with experimental measurements of the incidence of intracellular ice formation in order to further the understanding of the role of several important cryobiological parameters on the formation of intracellular ice. This thesis work has significantly contributed to the field of cryobiology by substantially improving the accuracy of two key equations used in the modelling of cellular osmotic responses to cryopreservation. The combination of accurate mathematical modelling and results from experiments will allow increased understanding of cellular responses to cryopreservation, leading to the design of novel cryopreservation protocols. / Chemical Engineering and Medical Sciences
2

Diffuse layer modeling on iron oxides : single and multi-solute systems on ferrihydrite and granular ferric hydroxide

Stokes, Shannon Nicole 04 October 2012 (has links)
Diffuse Layer Modeling was used to describe single and multi-solute adsorption of Pb(II), Cu(II), Zn(II) and Cd(II) to ferrihydrite and As(V), V(V) Si and Ca(II) on granular ferric hydroxide, a commercially available iron oxide. Macroscopic data were used in conjunction with x-ray adsorption spectroscopy (XAS) data to evaluate the diffuse layer surface complexation model (DLM) for predicting sorption over a range of conditions. A self-consistent database was created for each of the adsorbents. The DLM provided excellent fits to the single solute data for the ferrihydrite system with the incorporation of spectroscopic evidence. Little competition was seen in the bisolute systems, except under very high coverages. While the DLM captured the lack of competition under low and medium coverages, competitive effects were not adequately modeled by the updated DLM for high coverages. Challenges remain in adequately describing metal removal when sorption may not be the primary mechanism of removal. The capabilities of the DLM were then evaluated for describing and predicting multisolute sorption to granular ferric hydroxide (GFH). The model can adequately describe anion competition, but the electrostatic effects due to outer sphere sorption were overpredicted, leading to an inadequate model fit for As(V) and Ca²⁺ systems. Despite the limitations of the DLM, it may be an appropriate compromise between goodness of fit and number of parameters for future integration into dynamic transport models and thermodynamic databases. / text
3

The application of the multisolute osmotic virial equation to cryobiology

Prickett, Richelle Catherine Unknown Date
No description available.

Page generated in 0.0594 seconds