• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive DS-CDMA Receivers with Fast Tracking Capability for Wireless Communications

Sun, Chun-hung 25 April 2007 (has links)
The direct sequence (DS) code division multiple access (CDMA) is one of the most promising multiplexing technologies for wireless communications. It is also a core technology used in the wideband CDMA (WCDMA) system for the third generation (3G) wireless communication systems. In practice, in the CDMA systems the incomplete orthogonal of the spreading codes between users may introduce the so-called multiple access interference (MAI). Usually, the near-far problem exists when the interfering users are assigned powers much higher than the desired user. Such that the system performance might degrade, dramatically, and thus limits the system capacity. To circumvent the above-mentioned problems many effective adaptive multiuser detectors, based on the minimum mean square error (MMSE) and the minimum output energy (MOE) criteria subject to certain constraints have been proposed. In addition, to mitigate multipath fading effect, RAKE receiver was adopted due to the advantages of path diversity, thus, enhances the system performance. To implement the blind adaptive multiuser detector the linearly constrained minimum variance (LCMV), which is the constrained version of MOE, has been suggested. Further, the LCMV-based receivers exhibit high sensitivity to the channel mismatch caused by the unreliable estimation. To deal with this problem the constant modulus (CM) criterion was considered. In this dissertation, to deal with diverse phenomena encountered in practical channels, we first propose new blind adaptive multi-user detectors, based on the Min/Max criterion associated with the LCCM approach. For implementation the LC exponential window (EW) recursive least-square (RLS) algorithm is derived, and is referred to as the EW LCCM-RLS receiver. It can be used to effectively suppress the MAI and ISI, simultaneously, over multipath fading channels and are robust to mismatch problem caused by inaccuracies in the acquisition of timing and spreading code of the desired user. To reduce the complexity of the above-mentioned blind adaptive multi-user receiver with the LCCM-RLS algorithm, the so-called generalized sidelobe-canceller (GSC) structure is adopted, results in obtaining new CM-GSC-RLS algorithm. Moreover, to further improve the system performance for multipath fading and time-varying channel, the sliding window (SW) LCCM-RLS and SW CM-GSC-RLS algorithms are developed. It can be employed for multipath fading channel with the rapidly changing strong narrowband interference (NBI), which is joined suddenly to the CDMA systems. To look more inside the effect of selecting the initial value of the input signals autocorrelation matrix, some theoretical analyses for the SW LC-RLS as well as EW LC-RLS are provided. Since, unfortunately, the LCCM criterion is known to highly depend on the exact knowledge of the desired user amplitude that is not known exactly at receiver. In the final of this dissertation, a novel linearly constrained adaptive constant modulus RLS (LC-ACM-RLS) algorithm for blind DS-CDMA receiver is proposed. With this new proposed LC-ACM-RLS algorithm, the amplitude variation of the desired user, due to changing characteristics of the channel, can be tracked adaptively. Thus, better performance achievement, in terms of output signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER), over the conventional LCCM-LMS and LCCM-RLS algorithms can be expected.
2

Adaptive Rake Multiuser Receiver with Linearly Constrained Sliding Window RLS Algorithm for DS-CDMA Systems

Lee, Hsin-Pei 04 July 2003 (has links)
The technique of direct sequence code division multiple access (DS-CDMA) cellular system has been the focus of increased attention. In this thesis, we will consider the environment of DS-CDMA systems, where the asynchronous narrow band interference due to other systems is joined suddenly to the CDMA system. The suddenly joined narrow band interference will make the system crush down. The main concern of this thesis is to deal with suddenly joined narrow band interference cancellation. An adaptive filtering algorithm based on sliding window criterion and variable forgetting factor is known to be very attractive for violent changing environment. In this thesis, a new sliding window linearly constrained recursive least squares (SW LC-RLS) algorithm and variable forgetting factor linearly constrained recursive least squares (VFF LC-RLS) algorithm on the modified minimum mean squared error (MMSE) structure [9] is devised for RAKE receiver in direct sequence code-division multiple access (DS-CDMA) system over multipath fading channels. Where the channel estimation scheme is accomplished at the output of adaptive filter. The proposed SW LC-RLS algorithm and VFF LC-RLS has the advantage of having faster convergence property and tracking ability, and can be applied to the environment, where the narrow band interference is suddenly joined to the system, to achieve desired performance. Via computer simulation, we show that the performance, in terms of mean square errors (MSE) and signal to interference plus noise ratio (SINR), is superior to the conventional LC-RLS and orthogonal decomposition-based LMS algorithms based on the MMSE structure [9].
3

An investigation into the improvement in WCDMA system performance using multiuser detection and interference cancellation

Ngwenya, Themba M A 08 June 2005 (has links)
WCDMA is typically characterised as a system capable of providing mobile users with data rates up to 2 Mb/s and beyond. It has been termed an ultra high-speed, ultra high-capacity radio technology that will be able to carry a new range of fast, colourful media, such as colour graphics, video, animations, digital audio, Internet and e-mail that consumers will be able to access over their mobiles devices. This current study has researched on the various existing Multiuser detection (MUD) processes or proposals conducted by various research institutions around the world. It has identified the advantages that the past work offers, and it is these advantages that form the basis of the current research into the improvement techniques. The proposed Partial Parallel Pipelined Multiuser Detector (PPPMUD or P3MUD) has come about from two main flavours or directions of research. The first one seeks to promote the Soft Parallel Interference Cancellation technique as an effective bias mitigation technique. This bias occurring in the second stage decision statistics, exhibits a very harmful effect on system Bit Error Rate, (BER), particularly for large system loads. This current study goes further by carefully analysing the Soft Cancellation Factor, SCF behaviour to eventually derive and determine the optimum SCF value which exhibits positive characteristics when varied with the increasing system load (number of users). This optimum SCF value is called the universal SCF or SCFUNV, as it is theoretically supposed to perform favourably under various system loads. A favourable or acceptable performance would be characterised by low observed or measured BER during the system processing stages. A further enhancement to the operational performance of the SCFUNV algorithm is the SCFUNV Compensator, which is basically a compensation mechanism created by modelling the behaviour of the SCF values, and adjusts the SCFUNV depending on the system load, (number of simultaneous users). Thus, the SCFUNV is adaptively adjusted in order to perform acceptably under all load conditions. The second direction of research, as regards improvements in MUD techniques, involves the conventional Bit-Streaming, Pipelined Multiuser Detector. This came about due to the computational complexity as well as matrix inversions which affected earlier asynchronous multiuser detection techniques. This detector has a pipelined architecture which avoids multishot (block-based) detection and instead, processes the bits in a streaming fashion. The architecture consists of a matched filter followed by three stages of parallel interference cancellation, (PIC). This present study extends that research by outlining the advantages of incorporating the soft parallel interference cancellation technique, by way of the universal soft cancellation factor, (SCFUNV), into the conventional pipelined multiuser detector architecture to form the P3MUD architecture, which includes the compensator. The contributions of the proposed P3MUD system is that the observed BER output simulations are promising, with an observed overall decrease in the error rate for the P3MUD process, as compared to the conventional pipelined detection method. This decrease signifies an improvement offered by the proposed (P3MUD) algorithm. Further observed analysis indicates the possibility of decreasing the number of parallel interference cancellation stages from three to at least two, after the matched filter detection stage, without an observable change in system BER. Hence, the proposal of the two-stage P3MUD. / Dissertation (MEng (Electronic))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.0937 seconds