• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precision-cut liver slices as a system for studying xenobiotic metabolism

Hashemi, Elham January 1999 (has links)
No description available.
2

Spontaneous symmetry breaking for dipolar Bose-Einstein condensates in multiwell potentials

Lundström, Jakob January 2018 (has links)
In this work, dipolar Bose-Einstein condensates in multiwell potentialsplaced to form dierent geometrical structures are studied theoretically inorder to determine how the ground state population of the particles in thepotential wells changes depending on the relative strength of the particlesdipole moment. In the analytical limit (neglecting intersite tunneling), asymmetry-breaking change in the number of wells that are populated byparticles is observed for all studied systems for a certain value of the rela-tive strength of the particles dipole moment. The numerical calculationsfor nonzero intersite tunneling show a non-degenerate bifurcation whichis not seen in the analytical limit.
3

Interwell Connectivity Evaluation from Wellrate Fluctuations: A Waterflooding Managment Tool

Kaviani, Danial 2009 December 1900 (has links)
Using injection and production data, we can evaluate the connectivity between injector and producer well pairs to characterize their interwell regions and provide a tool for waterflood management. The capacitance model (CM) has been suggested as a phenomenological method to analyze the injection and production data for these purposes. Early studies involving reservoir simulation have shown CM to be a valuable tool but also have revealed several shortcomings. Many of these deficiencies have become more transparent in analyzing field data. This work consists of two parts: in the first part, we investigate some of the shortcomings of the CM and attempt to overcome them by modifying the algorithms. In the second part, we relate the problem of interwell connectivity to the rigorous concept of Multiwell Productivity Index (MPI) and provide a semi analytical approach. We have developed two modifications on the CM: the segmented CM that can be used where bottomhole pressures (BHP) are unknown and may change during the analysis interval, and the compensated CM that overcomes the requirement to rerun the model after adding a new producer or shutting in an existing producer. If both BHP changes and shut-in periods occur, the segmented and compensated CMs can be used simultaneously to construct a single model for a period of data. We show several hypothetical cases and a field case where these modifications generate a more reliable evaluation of interwell connectivity and increase the R2 of the model up to 15%. On the other hand, the MPI-based approach can predict the reservoir performance analytically for homogeneous cases under specific conditions. In the heterogeneous cases, this approach provides a robust connectivity parameter, which solely represents the reservoir heterogeneity and possible anisotropy and hence allows improved information exchange with the geologist. In addition, this connectivity parameter is insensitive to possible variations of skin factor and changes in number of wells. A further advantage of the new method is the flexibility to incorporate additional information, such as injector BHP, into the analysis process. We applied this approach on several hypothetical cases and observed excellent evaluation of both reservoir performance and connectivity.
4

Ultrasound-assisted Interactions of Natural Killer Cells with Cancer Cells and Solid Tumors

Christakou, Athanasia January 2014 (has links)
In this Thesis, we have developed a microtechnology-based method for culturing and visualizing high numbers of individual cells and cell-cell interactions over extended periods of time. The foundation of the device is a silicon-glass multiwell microplate (also referred as microchip) directly compatible with fluorescence microscopy. The initial microchip design involved thousands of square wells of sizes up to 80 µm, for screening large numbers of cell-cell interactions at the single cell level. Biocompatibility and confinement tests proved the feasibility of the idea, and further investigation showed the conservation of immune cellular processes within the wells. Although the system is very reliable for screening, limitations related to synchronization of the interaction events, and the inability to maintain conjugations for long time periods, led to the development of a novel ultrasonic manipulation multiwell microdevice. The main components of the ultrasonic device is a 100-well silicon-glass microchip and an ultrasonic transducer. The transducer is used for ultrasonic actuation on the chip with a frequency causing half-wave resonances in each of the wells (2.0-2.5 MHz for wells with sizes 300-350 µm). Therefore, cells in suspension are directed by acoustic radiation forces towards a pressure node formed in the center of each well. This method allows simultaneous aggregation of cells in all wells and sustains cells confined within a small area for long time periods (even up to several days). The biological target of investigation in this Thesis is the natural killer (NK) cells and their functional properties. NK cells belong to the lymphatic group and they are important factors for host defense and immune regulation. They are characterized by the ability to interact with virus infected cells and cancer cells upon contact, and under suitable conditions they can induce target cell death. We have utilized the ultrasonic microdevice to induce NK-target cell interactions at the single cell level. Our results confirm a heterogeneity within IL-2 activated NK cell populations, with some cells being inactive, while others are capable to kill quickly and in a consecutive manner. Furthermore, we have integrated the ultrasonic microdevice in a temperature regulation system that allows to actuate with high-voltage ultrasound, but still sustain the cell physiological temperature. Using this system we have been able to induce formation of up to 100 solid tumors (HepG2 cells) in parallel without using surface modification or hydrogels. Finally, we used the tumors as targets for investigating NK cells ability to infiltrate and kill solid tumors.  To summarize, a method is presented for investigating individual NK cell behavior against target cells and solid tumors. Although we have utilized our technique to investigate NK cells, there is no limitation of the target of investigation. In the future, the device could be used for any type of cells where interactions at the single cell level can reveal critical information, but also to form solid tumors of primary cancer cells for toxicology studies. / <p>QC 20150113</p>

Page generated in 0.0435 seconds