361 |
The Melanocortin System: Structure Activity Relationships of Alpha-N-Methylated MT-II Analogues and Mutation Studies of Human Melanocortin Receptor Subtypes 1 and 4Dedek, Matthew Milan January 2007 (has links)
The melanocortin system regulates various physiological processes including feeding behavior, sexual function, skin pigmentation and photoprotection via five G-protein coupled receptors and several endogenous ligands. There is a need for selective and potent ligands to the human melanocortin receptors (hMCRs) that can chemically resolve these various functions. This thesis presents three studies aimed at refining the understanding of the structural differences between binding pockets of the hMCR subtypes. In the first study α-N-methylated analogues of the non-selective agonist, MT-II, are evaluated for their in vitro function. This study produced the most potent hMC1R selective agonist to date. The following two studies examine the effects of mutations on the biological activity of melanocortin receptor subtypes 1 and 4. Much of the mutation study data is preliminary and requires a demonstration of reproducibility.
|
362 |
Functional mapping and in vivo metabolism of the monoclonal antibody TS1 and its single-chain fragment : Its interaction with the antigen and the anti-idiotypeHolm, Patrik January 2006 (has links)
Antibodies are proteins capable of specific interactions to a wide range of molecules. These interactions are facilitated by the complementary determining regions (CDR). Carcinomas are the most common of human cancers and they release significant amount of cytokeratins (CK) in the necrotic areas of the tumors. The CKs stay in the tumor, since they have low solubility. The antibody studied in this thesis, the anti-CK 8 antibody TS1, has shown to be effective in tumor targeting and is proposed to be useful in therapy. Single-chain antibodies (scFv) are recombinant antibodies which are much smaller than the intact IgG. This is an advantage when used in tumor therapy, since they can penetrate the tumors more easily than the larger IgG. Moreover, they are expressed by one single gene which make them easy to modify, for example by site-directed mutagenesis. The anti-idiotypic antibody αTS1 can be used to clear the TS1 form the circulation and thereby clear the body from non-tumor bound TS1 in therapy. To be able to modify the binding of an antibody to its antigen and or anti-idiotype, these interactions must be studied. In this study this is accomplished by chemical modifications of the IgGs TS1 and αTS1 and the antigen CK 8. Guided by these results, amino acid residues were mutated by using site-directed mutagenesis in the TS1-218 scFv and the effects were studied. From mutational study results, the functional epitope could be mapped and it was found that there are mainly tyrosines, but also charged residues, serine and a tryptophan that are important for both interactions. The binding of TS1-218 to both αTS1 and CK 8 could be improved by changing the negatively charged side-chains by mutations to their corresponding amide or alanine. Both the IgG and scFv versions of TS1 were administered in vivo. The IgG αTS1 was used to clear the TS1 from the circulation by forming immune complexes. The immune complexes, consisting of four or more antibodies, were mainly metabolized by the liver. The scFv TS1-218 could localize to the tumor in a tumor xenograft mouse model, although a higher uptake would be desired in a therapeutic strategy. The scFv was cleared rapidly by the kidneys, but the clearance could be slowed by pre-formed immune complexes with anti-TS1 scFv in vitro, prior to administration in vivo.
|
363 |
Sélection de mutations affectant la formation de biofilm chez Actinobacillus pleuropneumoniaeGrasteau, Alexandra 02 1900 (has links)
Actinobacillus pleuropneumoniae (App) est l’agent étiologique de la
pleuropneumonie porcine, une infection pulmonaire contagieuse chez les
porcs. Parmi les nombreux mécanismes de virulence retrouvés chez les
bactéries, la formation de biofilms joue souvent un rôle important dans la
pathogenèse. Il a été récemment démontré qu’App avait la capacité de former
des biofilms in vitro. Dans notre laboratoire, la formation de biofilms par App
a été évaluée en microplaques dans différents milieux de culture. Nous avons
démontré que la souche de référence de sérotype 1 est capable de former des
biofilms. Le but de ce travail est d’identifier des gènes impliqués dans la
biosynthèse et dans la régulation de l’expression des biofilms chez App.
L’objectif de cette étude était de générer une banque de mutants d’App
4074NalR à l’aide du transposon mini-Tn10. Cette banque de 1200 mutants a
été criblée à l’aide du modèle in vitro de formation de biofilms en
microplaques et en tubes : 24 mutants démontrant une formation de biofilms
modifiée par rapport à la souche mère App 4074NalR ont été sélectionnés et
identifiés, nous permettant ainsi de localiser le site d’insertion du transposon.
Une analyse a permis d’identifier de nouveaux gènes impliqués dans la
biosynthèse et dans la régulation de l’expression des biofilms chez App. Notre
criblage a permis d’identifier 16 gènes connus impliqués dans la formation de
biofilms chez App (hns) ou chez d’autres pathogènes (potD2, ptsI, tig and
rpmF) mais également de nouveaux gènes impliqués dans la formation de
biofilm (APL_0049, APL_0637 and APL_1572). Une caractérisation plus
poussée de ces gènes nous permettra d’améliorer la compréhension des
mécanismes impliqués dans la formation de biofilm chez App. / A. pleuropneumoniae (App) is the causative agent of porcine
pleuropneumonia, a contagious pulmonary infection in swine. Among the numerous
virulence mechanisms found in bacteria, the formation of biofilms often plays an
important role in pathogenesis. It has been recently demonstrated that App has the
ability to form biofilms in vitro. In our laboratory, the formation of biofilms by App
has been evaluated in microplates under different growth conditions. We showed
that the reference strain of serotype 1 is capable of forming biofilms when cultured in
a specific growth medium. The objective of this work is to identifiy genes implicated
in the biosynthesis and regulation of biofilm formation in App.
The objective of this study was to generate a mutant library of App using the
mini-Tn10 transposon. A total of 1200 mutants has been screened with the help of in
vitro models for biofilm formation which use microtiter plates or test tubes; 24
mutants exhibited modified biofilm formation when compared to the parental strain
4074NalR. The selection and identification of these mutants allowed the
identification of the insertion site of the transposon. Analysis revealed novel genes
implicated in biosynthesis and regulation of the biofilm formation in App. Our screen
allowed the identification of genes already associated in biofilm formation of App
(hns) or other pathogens (potD2, ptsI, tig and rpmF). Genes (APL_0049, APL_0637
and APL_1573) that have not yet been associated with biofilm formation were also
identified. Further characterization of the genes mentioned above would permit a
greater understanding of the mechanisms implicated in biofilm formation of App.
|
364 |
Repair of CFTR Defects Caused By Cystic Fibrosis MutationsShi, Li 28 November 2013 (has links)
Cystic fibrosis is caused primarily by deletion of Phe508. An exciting discovery was that CFTR’s sister protein, the P-glycoprotein (P-gp) containing the equivalent mutation (ΔY490), could be repaired by a drug-rescue approach. Drug substrates showed specificity, and their mechanism involves direct binding to the transmembrane domains (TMDs) since arginine suppressor mutations were identified in TMDs that mimicked drug-rescue to promote maturation. We tested the possibility of rescuing CFTR processing mutants with a drug-rescue approach. 1) Arginine mutagenesis was performed on TM6, 8, and 12. 2) Correctors were tested for specificity. 3) Truncation mutants were used to map the VX-809 rescue site. Correctors 5a, 5c, and VX-809 were specific for CFTR. VX-809 appeared to specifically rescue CFTR by stabilizing TMD1. Therefore, the TMDs are potential targets to rescue CFTR. Rescue of P-gp and CFTR appeared to occur by different mechanisms since no arginine suppressor mutations were identified in CFTR.
|
365 |
Repair of CFTR Defects Caused By Cystic Fibrosis MutationsShi, Li 28 November 2013 (has links)
Cystic fibrosis is caused primarily by deletion of Phe508. An exciting discovery was that CFTR’s sister protein, the P-glycoprotein (P-gp) containing the equivalent mutation (ΔY490), could be repaired by a drug-rescue approach. Drug substrates showed specificity, and their mechanism involves direct binding to the transmembrane domains (TMDs) since arginine suppressor mutations were identified in TMDs that mimicked drug-rescue to promote maturation. We tested the possibility of rescuing CFTR processing mutants with a drug-rescue approach. 1) Arginine mutagenesis was performed on TM6, 8, and 12. 2) Correctors were tested for specificity. 3) Truncation mutants were used to map the VX-809 rescue site. Correctors 5a, 5c, and VX-809 were specific for CFTR. VX-809 appeared to specifically rescue CFTR by stabilizing TMD1. Therefore, the TMDs are potential targets to rescue CFTR. Rescue of P-gp and CFTR appeared to occur by different mechanisms since no arginine suppressor mutations were identified in CFTR.
|
366 |
HOW A SILENT MUTATION SUPPRESSES THE ACTIVITY AND IRON INCORPORATION IN SUPEROXIDE DISMUTASEMei, Xiaonan 01 January 2012 (has links)
A mutation (CTG to TTG) of FeSOD gene was found in Escherichia coli. Since they both encode leucine, it is a silent mutation. Site-‐directed mutagenesis was applied to correct the mutation, and the mutant FeSOD (before gene correction) and wild type FeSOD (after gene correction) were purified. The FeSODs from the two genes were Characterized using different assays and spectroscopic methods including EPR and CD. The requirement for the rare codon TTG may result in slowed translation and heavy demand on a scarce tRNA. Cultures expressing wild type FeSOD are better able to grow for long times after addition of IPTG and more mature to incorporate Fe atoms to the active sites than are cultures expressing the mutant gene. Moreover, the wild type FeSOD has more activity than the mutant. To our knowledge, this is the first time that a silent mutation has been demonstrated to affect metal incorporation into a metalloenzyme.
|
367 |
Towards Development of Imidazolinone Herbicide Resistant Borage (Borago officinalis)2015 February 1900 (has links)
Borage (Borago officinalis) is an annual herb plant for culinary and medicinal uses. Due to a high level of gamma-linolenic acid (GLA) in its seed oil and the health-related benefits of GLA, borage is commercially cultivated. However, a herbicide-resistant variety has not yet been developed for effective weed management in borage farming. Thus, this thesis aimed to create, identify and characterize ethyl methanesulfonate (EMS) induced borage mutants for herbicide imidazolinone resistance. An EMS-mutagenized borage population was generated by using a series of concentrations of EMS to treat M1 seeds. After screening M2 borage plants with the herbicide, tolerant plants were selected, self-pollinated and grown to their maturity. The offsprings were subjected to herbicide screening again to confirm the phenotype, resulting in identification of two genetically stable imidazolinone-resistant lines. Two acetohydroxyacid synthase (AHAS) genes, AHAS1 and AHAS2, involved in the imidazolinone resistance were isolated and sequenced from both mutant (resistant) and wild type (susceptible) borage plants. Comparison of these AHAS sequences revealed that a single nucleotide substitution occurred in the AHAS1 resulting in an amino acid change from serine (S) in the susceptible plant to asparagine (N) in the first resistant line. The similar substitution was later found in the AHAS2 of the second resistant line. A KASP marker was developed for the AHAS1 mutation to differentiate the homozygous susceptible, homozygous and heterozygous resistant borage plants for the breeding purpose. The in vitro assay showed homozygous resistant borage containing the AHAS1 mutation could retain significantly higher AHAS activity than susceptible borage across different imazamox concentrations. The herbicide dose response test showed that the resistant line with the AHAS1 mutation was tolerant to four times the field applied concentration of the “Solo” herbicide.
|
368 |
The impact of induced mutations on key nutritional and agronomic traits of sorghum.Mbambo, Zodwa. January 2013 (has links)
Climate change, shrinking arable land, burgeoning population and malnutrition have made all
aspects of crop improvement a critical issue. Of these, nutritional quality of crops is perhaps
one of the most important aspects. Most cereals consumed in marginal agro-ecological zones
of Africa, for example sorghum and maize are impoverished nutritionally. Given therefore
the sole reliance on and the levels of consumption per day of such staples (up to 450 g/day), it
is clear that most people cannot obtain the recommended daily allowance (RDA) for many
nutrients including fibre, edible oil, protein, vitamins and mineral elements. In this thesis, the
development of a sorghum mutant population using gamma irradiation and the subsequent
employment of various analytical techniques to unravel multiple mutant traits with a
significant positive impact on nutritional enhancement in sorghum is described. Protein
analysis revealed a mutant designated SY accumulating (at the time) the highest ever reported
amount of free lysine (21.6 g/100g) and other essential amino acids and that these changes
were associated with induced protein polymorphisms. Adaptation of proton induced x-ray
emission (PIXE) for the spatial profiling of the distribution of 9 elements in sorghum seed
tissue allowed for the discovery of mutants with variations in the concentrations and
distribution of these elements. The observed changes included enhanced or diminished
accumulation of elements in preferential accumulation tissues and entire changes in cellular
localisation. The locations within a cell and the quantities of an element are often critical
determinants of bioavailability. The accumulation of multiple mutations affecting multiple
nutritional traits in individual mutant sorghum clearly indicates the versatility of gamma
irradiation induced mutations in addressing multiple nutritional challenges of sorghum. This
desirable phenomenon was further demonstrated by electron microscopic analysis of starch
granules and protein bodies across the mutants. Scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) revealed changes in size, shape, ultra-structure and
packed cell volumes of seed protein- and starch bodies. Induced mutation had a major effect on the protein body structure which in turn resulted in changes to protein digestibility. High
digestibility mutants had a unique dense protein matrix with dark inclusions. However,
improved protein quality traits were also associated with floury endosperm texture. Since
endosperm texture is an important grain quality attribute and plays a major agronomic role, it
is important to ensure that future work focuses on improving grain hardness. The mutants
obtained in this study are therefore a valuable germplasm source for sorghum breeding and
present real opportunities for addressing nutritional challenges of sorghum. / Ph.D. University of KwaZulu-Natal, Durban 2013.
|
369 |
Identifizierung und Charakterisierung essentieller Aminosäuren im humanen ADP-Rezeptor P2Y12Wittkopf, Doreen 27 November 2014 (has links) (PDF)
Kardiovaskuläre Ereignisse bilden die Haupttodesursache in den westlichen Ländern. Mit der Einführung von Clopidogrel, welches am ADP-Rezeptor P2Y12 wirkt, konnte die Mortalität und Morbidität von kardiovaskulären Ereignissen signifikant gesenkt werden. Der P2Y12 gehört als G-Protein-gekoppelter Rezeptor (GPCR) zur größten Gruppe membranständiger Rezeptoren, welche durch ihr ubiquitäres Vorkommen einen idealen Angriffspunkt in der Pharmakotherapie bilden. Zur intelligenten und gezielten Entwicklung von neuen Arzneimitteln bedarf es umfassender Kenntnisse der Struktur- und Wirkungsbeziehung von GPCR. Um den Modellrezeptor P2Y12 strukturell und funktionell zu charakterisieren, wurde eine sättigende Mutagenese in einem funktionell essentiellen Bereich des Rezeptors (Transmembranhelices 6 und 7 sowie 3. extrazellulärer Loop) durchgeführt. Hiermit sollten die Auswirkungen von Punktmutationen auf die Funktionsweise des Rezeptors untersucht werden. Hierfür wurden sättigende Mutantenbibliotheken für 66 Positionen erstellt, wobei jede Aminosäure (AS) durch jede nicht natürlicherweise im humanen P2Y12 vorkommende AS ersetzt wurde (1254 Mutanten). Diese wurden funktionell im Expressionssystem der Hefe Saccharomyces cerevisiae mit steigenden Agonistenkonzentrationen charakterisiert und anhand ihrer Funktionalität klassifiziert. Dabei wiesen 90,8 ± 1,9 % der Rezeptormutanten keine Wildtypeigenschaften auf. Die Auswertung von 77 Wirbeltierorthologen zeigte ebenso eine hohe Konservierung von 90,7 ± 1,5 % pro Position. Im direkten positionalen Vergleich zwischen evolutionären und in vitro Daten konnte eine Übereinstimmung der in vitro und in vivo Daten von 90,2 % gefunden werden. Die funktionellen Daten wurden in eine Online-Mutantendatenbank eingearbeitet und wurden in einem 3D-Rezeptor-Homologiemodell visualisiert. Damit ist der Beweis geführt worden, dass es mit guter Vorhersagewahrscheinlichkeit möglich ist, von evolutionären Daten Rückschlüsse auf die Relevanz von Mutationen zu ziehen.
|
370 |
Alternative rownstream roles for Ste2p and an α-arrestin in sacccharomyces cerevisiae mating2014 November 1900 (has links)
Ste2p and Ste3p are well-characterized yeast pheromone G-protein Coupled Receptors (GPCR) those are involved in the signaling of mating responses that lead to cell fusion. Their signaling–associated interactions with G-protein/MAPK signal transduction machinery are well established, homologous to those in mammalian systems, and serve as a simplified model system in GPCR research. While the arrestin- mediated biased signaling mechanism of mammalian GPCR has not been discovered for the pheromone receptors, a recent demonstration of α-arrestins being involved in the internalization of the pheromone GPCR, Ste2p was reported. The present study was designed to reevaluate and extend the alternate functionality for pheromone receptors and to determine the role of yeast arrestins in the yeast mating. Specific residues in the TM6 of Ste2p exhibiting strong mating and constitutive MAPK signaling were combined and investigated in terms of their effect on MAPK signal transduction leading to cell cycle arrest as well as their impact on downstream mating projection formation and zygote formation events. Our findings indicate that Ste2p possess as specific residues that govern its relative bias for mediating MAPK signaling or mating events. Relative dose response experiments accounting for systemic and observation bias for these mutations yielded evidence of mutational-derived functional biases for Ste2p and further validated the alternate pheromone dependent functionalities for Ste2p.
Further, arrestin knockout and knock-in studies showed that Art1 (Ldb19) is selectively involved in the regulation of zygote formation but not MAPK signal transduction following the binding of ligand to Ste2p receptors. In addition, ligand stimulated selective localization of Art1 (Ldb19) to the mating projection, implicating it in the regulation of downstream mating functionalities. Overall, while leaving the full mechanism of alternate/biased Ste2p signaling to be elucidated, these results highlight the possibility of continued relevance of the yeast pheromone-mating pathway as a simplified model for GPCR research in the context of arrestin-mediated biased GPCR signaling.
|
Page generated in 0.0692 seconds