• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 20
  • 17
  • 9
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 260
  • 65
  • 63
  • 41
  • 38
  • 37
  • 33
  • 32
  • 29
  • 28
  • 25
  • 25
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Discovery and Initial Characterizations of Neurofascin 155 High and Neurofascin 155 Low

Pomicter, Anthony 24 October 2008 (has links)
This thesis contains the findings from four years of research regarding an oligodendrocyte protein named neurofascin 155. The role of this protein in maintaining adhesion between the myelin sheath of oligodendrocytes and the axons of neurons has become well established in recent years and the research presented here has revealed that while western blots have previously shown one protein/band representing neurofascin 155, there are two proteins/bands. These two proteins have been named neurofascin 155 high and neurofascin 155 low due to their previous inclusion in the single band. The work leading up to their discovery, findings, and the relevance of these two proteins will be discussed in animal models with disrupted myelin:axon adhesion and in the human disease multiple sclerosis.
132

Axon Initial Segment Stability in Multiple Sclerosis

Thummala, Suneel K 01 January 2015 (has links)
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by inflammation and demyelination. In addition to these hallmark features, MS also presents with axonal pathology, which is likely responsible for the signs and symptoms of the disease. Although prominent in MS, axonal pathology is frequently considered a consequence of demyelination and not a primary event. This conclusion is consistent with demyelination inducing the loss of specific axonal domains, known as the nodes of Ranvier that are responsible for the propagation of action potentials along the axon. In contrast, we propose that axonal pathology associated with MS is a primary pathological event, independent of demyelination, and not a product of it. In support of our hypothesis, we have analyzed a different axonal domain known as the axon initial segment. Whereas a single axon has numerous nodes of Ranvier uniformly distributed along the axon, each axon contains only a single axon initial segment that is positioned immediately distal to the neuronal cell body. The axon initial segment is responsible for action potential generation and modulation, and hence is essential for normal neuronal function. Background studies conducted by our lab, employing a murine model of demyelination/remyelination, revealed no correlation between axon initial segment stability and myelin integrity. Here we investigate the fate of the axon initial segment in human multiple sclerosis. While not statistically significant, we provide data demonstrating an apparent 40% reduction in AIS numbers in MS. We further provide qualitative evidence that AIS integrity in MS is not dependent on myelination suggestive that axonal pathology may be a primary event in MS, independent of demyelination. Our current findings are intriguing, but unfortunately this study is underpowered, and more samples will be required to determine whether this apparent reduction is statistically significant.
133

Autotaxin in Central Nervous System Development and Disease

Wheeler, Natalie A 01 January 2016 (has links)
During development, oligodendrocytes (OLGs), the myelinating cells of the central nervous system (CNS), undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well-synchronized changes in morphology and gene expression patterns. The studies presented in this dissertation identified the extracellular factor Autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system, as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysoPLD activity, which has been well-characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). LPA binds to Gprotein-coupled LPA receptors (LPARs) on the surface of OLGs to initiate downstream signaling events. ATX’s lysoPLD activity was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. When looking further downstream of the ATX-LPA axis, down-regulation of LPA receptor 6 (LPA6) was found to reduce the expression of OLG differentiation genes as well as the overall process network area of OLGs. Thus, LPA6 plays a role in both the gene expression and morphology changes seen in OLG differentiation. These findings prove useful for future therapeutic targets needed for demyelinating diseases of the CNS such as Multiple Sclerosis (MS), in which OLGs fail to differentiate into mature OLGs, needed for remyelination. Additionally, white matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is a toxic factor to OLGs. We show here that Tat treatment reduces the expression of OLG differentiation genes and the overall process network area of OLGs. Additionally, Tat-treated OLGs have reduced ATX lysoPLD activity and there is a physical interaction between Tat and ATX. Together, these data strongly suggest functional implications of Tat blocking ATX’s lysoPLD activities and thus the ATX-LPA signaling axis proves to play a significant role in the development of OLGs.
134

Ciliary neurotrophic factor controle la migration des progéniteurs du cerveau adulte de rongeur pendant la phase de rémyélinistion.

Vernerey, Julien 02 October 2012 (has links)
Le remplacement des oligodendrocytes myélinisants par des progéniteurs endogènes a été observé dans le contexte des pathologies démyélinisantes via le recrutement de deux populations distinctes de progéniteurs : les progéniteurs dérivant des cellules souches adultes de la zone sous ventriculaire (SVZ) et les précurseurs d'oligodendrocytes (OPCs) du parenchyme. Réactivés par des facteurs présents dans le cerveau après lésion, ces progéniteurs acquièrent de nouvelles propriétés migratoires et sont recrutés au niveau du site lésionnel. Toutefois, ces tentatives d'autoréparation endogènes sont limitées et ne permettent pas une récupération fonctionnelle, dans la grande majorité des cas. Cet échec dans la régénération peut être imputé en parti à des défauts de migration de ces cellules vers les zones lésées. Divers signaux sont impliqués dans le recrutement des cellules progénitrices allant de signaux développementaux ré‐exprimés au niveau de la lésion à l'expression de cytokines induite par la neuroinflammation. Nos données dévoilent de nouvelles fonctions pour Reelin et CNTF dans le contrôle de la migration des progéniteurs neuraux pendant la phase de remyélinisation chez la souris. Alors que Reelin induit la dispersion des cellules dérivant de la SVZ hors de leur niche rendant plus efficace les processus de recrutement spontané vers la lésion démyélinisée, CNTF participe au contrôle directionnel de leur migration vers de la zone endommagée in vivo. L'utilisation de tests in vitro nous a permis de montrer que Reelin, en plus de son effet décrit sur le détachement des neuroblastes de la SVZ migrant en chaîne, exerce un effet chimiocinétique. / Replacement of myelinating oligodendrocytes by endogenous progenitors has been demonstrated to occur in demyelinating diseases via the recruitment of two distinct pools of progenitors: Subventricular zone (SVZ)‐derived progenitors and parenchymal oligodendrocyte precursors (OPCs). Becoming re‐activated by factors present in the brain after injury, these progenitors acquire new migration properties and are recruited to the lesion sites. However these spontaneous repair attempts are limited and do not permit efficient functional recovery. This failure can be due in part to an inefficient migration of these cells to the lesion site. Numerous signals are involved in the migration of precursor cells into the area of brain damage ranging from developmental signals re‐expressed at the lesion site to neuroinflammation‐induced cytokines. Our data uncover new functions for Reelin and CNTF in the control of neural progenitor's recruitment during the remyelination phase in mouse model of demyelination. While Reelin induces SVZ‐derived cells dispersion form their niche which potentiates the spontaneous recruitment processes to the demyelinated lesion, CNTF participates in the control of their migration toward the damaged site in vivo. Using in vitro assays we show that Reelin, in addition to its already described detachment effect on SVZ neuroblasts chain migration, is chemokinetic. CNTF is acting on SVZ derived progenitors and parenchymal OPCs as a chemoattractant, which cells respond to it in gradient sensing manner. All together, these two studies reveal key function for Reelin and CNTF in the post‐lesional migration.
135

Regulation and functional consequences of MCP-1 expression in a model of Charcot-Marie-Tooth 1B disease / Regulation und funktionelle Relevanz von MCP-1 in einem Model der Charcot-Marie-Tooth 1B Erkrankung

Fischer, Stefan Martin January 2008 (has links) (PDF)
Charcot-Marie-Tooth 1B (CMT1B) is a progressive inherited demyelinating disease of human peripheral nervous system leading to sensory and/or motor function disability and is caused by mutations in the P0 gene. Mice heterozygously deficient for P0 (P0+/-) are an adequate model of this human disorder showing myelin degeneration, formation of onion bulbs, remyelination and a reduced motor conduction velocity of around 30m/s similar to patients. Previously, it had been shown that T-lymphocytes and macrophages play a crucial role during pathogenesis in peripheral nerves of P0+/- mice. Both, T-lymphocytes and macrophages increase in number in the endoneurium and deletion of T-lymphocytes or deletion of a macrophage-directed cytokine ameliorates the disease. In this study the monocyte chemoattractant protein-1 (MCP-1) was identified as an early regulated cytokine before onset of disease is visible at the age of six months. MCP-1 mRNA and protein expression could be detected in femoral quadriceps and sciatic nerves of P0+/- mice already at the age of one month but not in cutaneous saphenous nerves which are never affected by the disease. MCP-1 was shown to be expressed by Schwann cells and to mediate the immigration of immune cells into peripheral nerves. Deletion of MCP-1 in P0+/- mice accomplished by crossbreeding P0 and MCP-1 deficient mice revealed a substantial reduction of immune cells in peripheral nerves of P0+/-/MCP-1+/- and P0+/-/MCP-1-/- mice at the age of six months. In twelve months old mice reduction of immune cells in peripheral nerves is accompanied by amelioration of demyelinating disease in P0+/-/MCP-1+/- and aggravation of demyelinating disease in lumbar ventral roots of P0+/ /MCP-1-/- mice in comparison to P0+/ /MCP 1+/+ mice. Furthermore, activation of the MEK1/2-ERK1/2 signalling cascade could be demonstrated to take place in Schwann cells of affected peripheral nerves of P0+/- mice overlapping temporarily and spatially with MCP-1 expression. An animal experiment using a MEK1/2-inhibitor in vivo, CI-1040, revealed that upon reduction of ERK1/2 phosphorylation MCP-1 mRNA expression is diminished suggesting that the activation of the MEK1/2-ERK1/2 signalling cascade is necessary for MCP-1 expression. Additionally, peripheral nerves of P0+/- mice showing reduced ERK1/2 phosphorylation and MCP-1 mRNA expression also show reduced numbers of macrophages in the endoneurium. This study shows a molecular link between a Schwann cell based mutation and immune cell function. Inhibition of the identified signalling cascade might be a putative target for therapeutic approaches. / Die humane Erkrankung Charcot-Marie-Tooth 1B (CMT1B) ist eine erbliche, chronisch fortschreitende Erkrankung des peripheren Nervensystems die durch Mutation des P0-Gens verursacht wird und zu motorischen und/oder sensorischen Defiziten führt. Sehr ähnlich der humanen Erkrankung weist das Mausmodell, eine für das Myelinprotein P0 heterozygot-defiziente Maus (P0+/-), Degeneration peripheren Myelins, aufeinanderfolgende Zyklen von De- und Remyelinisierung als auch reduzierte Nervenleitgeschwindigkeiten auf. Wissenschaftliche Untersuchungen am Mausmodell ergaben eine Beteiligung von T-Lymphozyten und Makrophagen an der Pathogenese. In dieser Studie wurde das Chemokin „Monocyte Chemoattractant Protein-1“ (MCP-1) als pathogen-relevant in P0+/- Mäusen identifiziert. MCP-1 mRNA und Protein wurden sowohl im Alter von sechs und zwölf Monaten nachgewiesen, Stadien, in denen morphologische Veränderungen peripherer Nerven von P0+/- Mäusen zu erkennen sind, aber auch im Alter von einen und drei Monaten, ein Alter bei dem pathologischen Veränderungen nicht zu finden sind. Mit Hilfe von MCP-1 defizienten Mäusen (MCP-1-/-) und Verpaarung mit P0-defizienten Mäusen konnten weiterführende Untersuchungen zur Rolle von MCP-1 im peripheren Nerv der Maus durchgeführt werden. So zeigte es sich mittels Transplantation von GFP-positivem Knochenmark, dass MCP 1 die Infiltration von Makrophagen aus dem Blut in periphere Nerven vermittelt. Weiterhin konnte gezeigt werden, dass periphere Nerven von sechs Monate alten P0+/-/MCP-1+/- und P0+/-/MCP-1-/- Mäusen trotz signifikant niedrigerer Anzahl von Immunzellen keine Milderung der Demyelinisierung zeigen. Hingegen weisen periphere Nerven von zwölf Monate alten P0+/ /MCP-1+/- Mäusen sowohl weniger Makrophagen und T-Lymphozyten als auch wesentlich weniger pathologische Veränderungen auf. Periphere Nerven von P0+/-/MCP-1-/- Tieren dagegen zeigen nur eine nicht signifikante Reduktion von Immunzellen und sogar eine Verschlechterung des Phänotyps im Vergleich zu ventralen Spinalwurzeln von P0+/-/MCP-1+/+ Mäusen. Weiterführende Untersuchungen ergaben, dass eine Aktivierung der MEK1/2-ERK1/2 Signalkaskade sowohl in peripheren Nerven von drei und sechs Monate alten P0+/- Mäusen zu finden ist, allerdings, ähnlich der Expression von MCP-1, nur in peripheren Nerven, die von der Demyelinisierung betroffen sein können. Unter Verwendung eines Inhibitors der Kinasen MEK1 und 2 konnte in vivo gezeigt werden, dass Phosphorylierung von ERK1/2 für die erhöhte MCP-1 Expression in peripheren Nerven von P0+/- Mäusen notwendig ist. Darüber hinaus wurde durch Verminderung der ERK1/2-Phosphorylierung eine Reduktion von Makrophagen im Endoneurium von P0+/- Tieren erzielt.
136

Investigations into the Function of Claudin-11 Tight Junctions in CNS Myelin

Denninger, Andrew Ryan January 2016 (has links)
Thesis advisor: Daniel A. Kirschner / The myelin sheath of the central nervous system contains a network of interlamellar tight junctions known as the radial component. Ablation of claudin-11, a tight junction protein, results in the absence of the radial component and compromises the passive electrical properties of the myelin sheath. Although tight junctions are known to regulate paracellular diffusion, this barrier function has not been directly demonstrated for the radial component, and some evidence suggests that the radial component may also, or instead, mediate adhesion between myelin membranes. To investigate the physical properties of claudin-11 tight junctions, we first compared fresh, unfixed Claudin 11-null and control nerves using X-ray diffraction. In Claudin 11-null tissue, we detected no changes in myelin structure, stability, or membrane interactions, which argues against the notion that myelin tight junctions exhibit significant adhesive properties. To examine myelin permeability in the absence of the radial component, we measured the kinetics of osmotic compaction and recovery in knockout and control myelin. We found that myelin lacking claudin-11 responded more rapidly to osmotic stress, indicating an increase in permeability to water and small osmolytes. To further test this hypothesis, we explored the possibility of measuring the diffusion of water through myelin using neutron diffraction, a technique that had been pioneered in myelin decades ago but was largely unused because of previous limitations in neutron technology. After establishing that present-day neutron instruments were capable of measuring diffusion in myelin, we applied this technique to samples from mice lacking claudin-11. Consistent with our X-ray diffraction studies, we found that H2O-D2O exchange was more rapid in Claudin 11-null mice compared to controls. Thus, our data indicate that the radial component serves primarily as a diffusion barrier and elucidate the mechanism by which tight junctions govern myelin function. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
137

Prévention des neuropathies périphériques induites par les chimiothérapies par une modulation pharmacologique des dérives des formes réactives de l'oxygène et des récepteurs muscariniques / Prevention of peripheral neuropathies induced by chemotherapies trough a pharmalogical modulation of reactive oxygen species and muscarinic receptors

Cerles, Olivier 18 September 2017 (has links)
Les chimiothérapies à base de sels de platine exercent leurs effets anti-tumoraux en compromettant l'intégrité de l'ADN. Cette cytotoxicité conduit à une augmentation du stress oxydant qui, à son tour, favorise les processus de mort cellulaire. L'oxaliplatine indiquée dans les cancers métastatiques secondaires du colon et dans les cancers colorectaux, induit une augmentation des espèces réactives de l’oxygène en diminuant le glutathion réduit dans les cellules cancéreuses. Similairement aux autres chimiothérapies à base de sels de platine, elle doit être utilisée avec précaution. En effet, la majorité des patients recevant de l'oxaliplatine développent des neuropathies périphériques. Cette neurodégénérescence est un facteur limitant de cette chimiothérapie puisqu'elle peut nécessiter une réduction du dosage ou même une interruption du traitement si cet effet secondaire atteint une sévérité de grade 3. Les toxicités neurologiques peuvent se manifester dans les heures suivant l'injection sous forme aiguë. La forme chronique résulte d'injections cumulées de doses élevées. La forme aiguë, caractérisée par une paresthésie transitoire et une myotonie, est réversible et se résout généralement en quelques jours tandis que la forme chronique présente une paresthésie et une thermoalgie persistantes résultant de la dégradation axonale distale et de la démyélinisation des fibres nerveuses de gros diamètre. Les voies inflammatoires ont été incriminées dans l'étiologie de cette neurodégénérescence. Le niclosamide, un ténicide modulant les voies Stat3, Wnt, Notch et Beta-caténine, a été étudié in vitro et in vivo. Ayant déjà démontré les propriétés anti-inflammatoires de ce composé dans la sclérodermie systémique, nous avons cherché à déterminer si le niclosamide pourrait également prévenir la neurotoxicité de l'oxaliplatine. Le niclosamide a démontré une neuroprotection à la fois in vitro sur les neurones traités par l'oxaliplatine et in vivo dans les modèles de neuropathies périphériques induites par l'oxaliplatine. Le niclosamide est déjà utilisé en clinique avec des effets secondaires limités. L'association de cette molécule avec l'oxaliplatine pourrait augmenter l'indice thérapeutique de cette chimiothérapie. La benztropine est un inhibiteur des récepteurs muscariniques M1 et M3 possédant un potentiel de remyélinisation démontré dans le système nerveux central en favorisant la différenciation et la prolifération des cellules précurseurs des oligodendrocytes. La répartition différentielle entre les sous-types de récepteurs peut permettre le ciblage spécifique des cellules tumorales, notamment par l'inhibition de la signalisation autocrine de l'acétylcholine. La benztropine est un composé bien toléré qui ne provoque aucune réaction immunologique lors de son administration. Cette molécule présente un effet neuroprotecteur in vitro sur les neurones traités par l'oxaliplatine au cours d’études de viabilité cellulaire ainsi qu’in vivo dans les modèles murins de neuropathies périphériques induites par l'oxaliplatine et le diabète. L'association de cette molécule avec l'oxaliplatine pourrait augmenter l'indice thérapeutique de cette chimiothérapie, en potentialisant ses effets antitumoraux tout en diminuant la neurotoxicité. L’ubiquité des propriétés neuroprotectrices de la benztropine a été démontrée sur des neuropathies périphériques résultants d’autres étiologies. Nous avons ici décrit deux molécules permettant de conserver l’efficacité antitumorale du traitement par oxaliplatine tout en limitant ses effets neurotoxiques. Nous avons décrit les mécanismes par lesquels ces molécules exercent leur neuroprotection. Les résultats prometteurs obtenus au cours de ces travaux permettent d’envisager l’utilisation en clinique de ces molécules afin de prévenir non seulement les neuropathies périphériques induites par l'oxaliplatine, mais aussi les neuropathies périphériques résultant d'autres étiologies. / Platinum-based chemotherapies have been shown to elicit their anti-tumoral effects by compromising DNA integrity. These impairments ultimately lead to a burst in oxidative stress which in turn promotes cell death processes. Oxaliplatin, a platinum-based antineoplastic drug is usually indicated in secondary metastatic colon cancers and colorectal cancers and mediates a rise in reactive oxygen species through the depletion of reduced glutathione in cancerous cells. This chemotherapy is indicated as a frontline and an adjuvant treatment and similarly to other platinum-based chemotherapies, it warrants for particular caution. Most patients receiving oxaliplatin develop peripheral neuropathies. This neurodegeneration is a limiting factor of this chemotherapy since it may require the lowering of dosage or even the interruption of the treatment if this side-effect is assessed as a grade 3 peripheral neuropathy. Neurological toxicities may manifest within hours of injection as an acute form or as a chronic form resulting from cumulated high-dosage injections. The acute form, characterized by transient paresthesia and myotonia, is reversible and usually resolves within days while the chronic form presents persistent paresthesia and thermoalgia resulting from distal axonal degradation and demyelination of large fibers. Inflammatory pathways have also been incriminated in the etiology of this neurodegeneration. Niclosamide, a teniacide known to downregulate Stat3, Wnt, Notch and Beta-catenin pathways was investigated in vitro and in vivo. Having previously demonstrated this compound’s anti-inflammatory properties in systemic sclerosis, we sought to investigate whether niclosamide could also prevent oxaliplatin’s neurotoxicity. Niclosamide demonstrated neuroprotection both in vitro on oxaliplatin-treated neurons and in vivo in models of oxaliplatin-induced peripheral neuropathies. Niclosamide is used in humans with limited side-effects. The association of this molecule with oxaliplatin could increase the therapeutic index of this chemotherapy. Benztropine is an inhibitor of muscarinic M1 and M3 receptors with known remyelinating potential in the central nervous system by promoting oligodendrocytes precursor cells differentiation and proliferation. The differential distribution between subtypes of receptors can allow the specific targeting of tumor cells, namely through the inhibition of autocrine acetylcholine signaling. This compound is well tolerated and does not elicit any immunological reaction upon its administration. These observations of potential for both, preventing neurotoxicity as well as increasing the efficacy profile of neurotoxic chemotherapies, prompted us to investigate this M1 and M3 receptors inhibitor. Benztropine demonstrated neuroprotection in vitro on oxaliplatin-treated neurons as demonstrated by viability assays studies as well as in vivo in models of oxaliplatin-induced as well as diabetic peripheral neuropathies. The association of this molecule with oxaliplatin could increase the therapeutic index of this chemotherapy, potentiate this chemotherapy’s antitumoral effects against certain cancers as well as decrease the occurrence of diabetic neuropathies, a prevalent complication of diabetes. We have herein described two molecules which allow oxaliplatin treatment to exert its cytotoxic effects without eliciting its neurotoxicity. Furthermore, we have described the mechanisms by which these molecules exert their neuroprotection. The neuroprotective abilities of one of these molecules have also been broadened by the study of other types of peripheral neuropathies, namely diabetic neuropathies. The promising results obtained over the course of these works allow for optimism in the prospect of finding therapies to counteract not only oxaliplatin-induced peripheral neuropathies but peripheral neuropathies resulting from other etiologies.
138

Molecular Interactions between Neurons and Oligodendrocytes during Myelin Formation / Dissertation for the award of the degree "Doctor rerum naturalium" Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen

Timmler, Sebastian 17 September 2018 (has links)
No description available.
139

Modulation of OPC migration : improving remyelination potential in multiple sclerosis

Peeva, Elitsa Radostinova January 2018 (has links)
In the brain, axons are wrapped by myelin sheaths which ensure fast saltatory conduction of impulses and provide metabolic support. In multiple sclerosis (MS), the myelin sheaths are lost which leaves the axon denuded. This not only results in slower conduction of action potentials, but if prolonged, can also lead to axon death due to the loss of metabolic support. This neurodegeneration is the main cause of permanent disability in multiple sclerosis patients. The axon death and disability which stem from it could be prevented by restoring the myelin wrap before axon damage has occurred. This remyelination process is carried out by oligodendrocyte precursor cells which are present throughout life. To remyelinate, OPCs migrate to the area of damage and differentiate into myelinating oligodendrocytes which ensheathe axons with new myelin. In multiple sclerosis, this process occurs but is insufficient to overcome the damage. Therefore, central to the therapeutic efforts in multiple sclerosis is the aim to improve endogenous remyelination. Enhancing recruitment of oligodendrocyte precursor cells (OPCs) to the areas of damage is a clinically unexplored target. To investigate the therapeutic potential of OPC recruitment modulators, I have looked at 2 different targets involved in migration NDST1/HS and Sema3A/NP1. The first target, heparan sulfate (HS) is a proteoglycan which is important to OPC migration, investigated by Pascale Durbec's group in France. In a demyelinating mouse model, its key synthesising enzyme, NDST1, is upregulated by oligodendroglia in a belt around the lesion to aid OPC recruitment. Loss of NDST1 in oligodendrocytes was found to impair remyelination and reduce OPC migration in mice. In collaboration with them, I investigated the relevance of this molecule in post-mortem MS human tissue. I found that in human as well as mouse, NDST1 was primarily expressed by oligodendroglia. The protein level and the proportion of oligodendroglia expressing NDST1 was increased in MS compared to control indicating NDST1 upregulation as a disease response in human. We also found that low numbers of NDST1+ oligodendroglia correlate with bigger sizes of lesions and chronic lesion types that fail to repair, highlighting its importance in repair. Moreover, high numbers of NDST1+ cells in a patient correlated with increased remyelination potential. This indicates that in human, intra-patient variation in NDST1 level may explain differences in potential for endogenous repair. Secondly, I looked at Sema3A, a chemorepulsive molecule which is upregulated in demyelinated injury rodent models aswell as multiple sclerosis lesions, particularly in OPC-depopulated chronic active lesions. Research has consistently found that the level of Sema3A negatively correlates to remyelination because Sema3A hinders OPC migration. This has highlighted Sema3A as a potential target to improve OPC recruitment in MS however the size and shape of the molecule make it hard to design therapeutics against it. Therefore, I looked at its druggable receptor, Neuropilin 1 (NP1), to see whether inhibition of NP1 had the same positive effect on OPC recruitment and remyelination as lowering the level of Sema3A. NP1 is a tyrosine kinase receptor for both Sema3A and vascular endothelial growth factor (VEGF) and is found in many cell types. To check if NP1 inhibition is beneficial, I assessed remyelination in a mouse where the Sema3A binding site of NP1 has been mutated to prevent Sema3A binding and exerting its effect. This is a proxy for a (currently unavailable) ideal NP1 inhibitor of the Sema3A site only. Contrary to my expectations, OPC recruitment and remyelination in the mutant mice were not improved. However, the NP1 mutation resulted in an altered immune response. To exclude the possibility that no improvement in the OPC recruitment and remyelination of those mice was seen because it was negated by the altered immune response, I explored a cell specific mutant mouse in which NP1 was deleted in oligodendroglia only. In this mutant as well, I did not see improvement of OPC recruitment and remyelination. I therefore propose that Neuropilin 1 is not imperative for Sema3As action in remyelination and is not suitable as a therapeutic target in multiple sclerosis. Loss of the whole NP1, but not loss of the Sema3A site also resulted in biggermyelinated and unmyelinated axons as well as a different myelin thickness post remyelination. This showed that VEGF and the VEGF site on NP1 in oligodendroglia have a previously unknown but important role in determining axon size and myelin thickness which should be further investigated. To further elucidate those results in a simple system, I looked at how Sema3A, NP1-Sema3A inhibitors, VEGF and NP1-VEGF inhibitor affect OPC behaviour. I confirmed Sema3As chemorepulsive effect but also showed that at different concentrations it can improve proliferation and survival of OPCs. Inhibiting the Sema3A site and the VEGF site of NP1 by specific blocking antibodies also affects OPC proliferation and maturation. This suggested that NP1s ligands are involved in more than just OPC migration. In summary, this work supports the relevance of the mouse findings that NDST1 is upregulated in demyelination and important for repair for human illustrating that it might be a suitable therapeutic target to investigate. However, despite the importance of Sema3A in MS models, its only reported receptor, NP1, is not essential for Sema3As action. Therefore, it is an unsuitable therapeutic target. The fact that NP1 is an inappropriate drug target for MS is further demonstrated by the involvement of its ligands in multiple OPC behaviours both in positive and negative aspects.
140

Overcoming Glial-Derived Inhibition of Regeneration in CNS Neurons: From Novel Compounds to Novel Uses for FDA-Approved Compounds

Johnstone, Andrea 29 August 2011 (has links)
Trauma to the central nervous system (CNS) results in an irreversible disruption of axon tracts, often leading to lifelong functional deficits. Despite a large body of research into the mechanisms that underlie the lack of axonal regeneration after CNS injury, there are currently no effective treatments. One major obstacle involves the presence at injury sites of CNS growth-inhibitory molecules, such as myelin proteins and astrocyte-derived chondroitin sulfate proteoglycans (CSPGs), which act as environmental barriers to axonal regeneration. Our lab recently described the identification and characterization of a novel compound, F05, which promotes growth on inhibitory substrates in vitro. I show that F05 improves regeneration in vivo after acute sensory axon transection as well as after optic nerve crush injury. F05 does not target known signaling molecules involved in CSPG or myelin mediated inhibition but does affect growth cone microtubule dynamics, suggesting a potentially novel mechanism of growth promotion. Using a protein microarray, I show that apoptotic signaling pathways may underlie glial-derived inhibition and its relief by F05. In addition, I employed a comparative gene microarray to show that F05 induces similar changes in gene expression as antipsychotics of the piperazine phenothiazine structural class (PhAPs). Indeed, PhAPs share F05’s ability to overcome glial-derived inhibition of cultured CNS neurons and do so through a mechanism dependent on antagonism of calmodulin. These studies have led to the identification of potentially novel clinical treatments for CNS injury as well as a better understanding of environmentally derived growth-inhibitory signaling mechanisms.

Page generated in 0.0497 seconds