Spelling suggestions: "subject:"palmitoyltransferase""
1 |
Estudos computacionais da enzima N-miristoiltransferase de Plasmodium falciparum e seus inibidores como candidatos a agentes antimaláricos / Computational studies on Plasmodium falciparum N-myristoyltransferase enzyme and its inhibitors as antimalarial drug candidatesGarcia, Mariana Lopes 18 July 2017 (has links)
A malária é uma doença infecciosa causada pelos parasitas do gênero Plasmodium e transmitida pelo mosquito Anopheles spp. Devido ao surgimento de casos de resistência aos fármacos disponíveis novos alvos e candidatos a fármacos são necessários. Recentemente, a enzima N-miristoiltransferase (NMT) foi confirmada como essencial para o parasita e validada como alvo terapêutico para o desenvolvimento de candidatos a fármacos antimaláricos. O objetivo desse trabalho foi identificar os determinantes moleculares responsáveis pela atividade inibitória de uma série de derivados benzotiofênicos frente à NMT. Nesse sentido, estudos de relação quantitativa estrutura-atividade (QSAR) 2D e 3D foram desenvolvidos para dois conjuntos de dados de derivados benzotiofênicos como inibidores da enzima do parasita (PfNMT) e a homóloga humana (HsNMT). Além disso, estudos de modelagem por homologia da PfNMT foram conduzidos. Os estudos de QSAR 2D foram desenvolvidos pelo método de Holograma QSAR (HQSAR). O modelo estrutural de PfNMT foi aplicado na construção dos modelos QSAR 3D CoMFA (Comparative Molecular Field Analysis) e CoMSIA (Comparative Molecular Similarity Index Analysis). Os estudos de QSAR 3D foram conduzidos com diferentes métodos de cálculo de carga parcial atômica (Gasteiger-Hückel, MMFF94 e AM1-BCC, CHELPG e Mulliken) e de alinhamento molecular (Máxima Subestrutura Comum, alinhamento flexível e baseada no alvo molecular). Os melhores modelos construídos pelos métodos de QSAR 2D e 3D foram robustos, internamente consistentes e com elevada capacidade de predição da atividade de novos compostos contra a PfNMT. Os mapas de contribuição e de contorno geraram informações importantes sobre a relação estrutura-atividade dos compostos. Os resultados permitiram a identificação das bases moleculares responsáveis pela atividade dos inibidores benzotiofênicos e são úteis para o planejamento de novos inibidores mais potentes e seletivos para a enzima do parasita. / Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles spp. mosquitos. Due to the emerging resistance to current available drugs, great efforts for new molecular target and drugs are required. Recently, N-myristoyltransferase (NMT) was confirmed as an essential enzyme to malaria parasites and validated as a chemically tractable target for the development of new drug candidates against malaria. This work aimed to shed light on the molecular requirements underlying the inhibitory activity of benzothiophene derivatives against NMT. Therefore, 2D and 3D quantitative structure-activity relationship (QSAR) studies were developed for two datasets of benzothiophene derivatives as P. falciparum NMT (PfNMT) and the human homologue (HsNMT) inhibitors. Also, homology modeling studies for PfNMT were developed. The 2D QSAR studies were developed by the Hologram QSAR (HQSAR) method. The PfNMT structural model was applied in the construction of 3D QSAR models CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Index Analysis). Different molecular alignment (maximum common substructure, flexible alignment and structure based) and atomic partial charge calculation (Gasteiger-Hückel, MMFF94, AM1-BCC, CHELPG and Mulliken) methods were used to build the 3D QSAR models. The best models showed internal consistency and high predictive ability of biological activity against PfNMT. The contribution and contour maps gave important information about compounds structure-activity relationship. The results allowed the identification of the molecular requirements underlying the inhibitory activity and should be useful for the design of novel potent and selective PfNMT inhibitors as antimalarial drug candidates.
|
2 |
Estudos computacionais da enzima N-miristoiltransferase de Plasmodium falciparum e seus inibidores como candidatos a agentes antimaláricos / Computational studies on Plasmodium falciparum N-myristoyltransferase enzyme and its inhibitors as antimalarial drug candidatesMariana Lopes Garcia 18 July 2017 (has links)
A malária é uma doença infecciosa causada pelos parasitas do gênero Plasmodium e transmitida pelo mosquito Anopheles spp. Devido ao surgimento de casos de resistência aos fármacos disponíveis novos alvos e candidatos a fármacos são necessários. Recentemente, a enzima N-miristoiltransferase (NMT) foi confirmada como essencial para o parasita e validada como alvo terapêutico para o desenvolvimento de candidatos a fármacos antimaláricos. O objetivo desse trabalho foi identificar os determinantes moleculares responsáveis pela atividade inibitória de uma série de derivados benzotiofênicos frente à NMT. Nesse sentido, estudos de relação quantitativa estrutura-atividade (QSAR) 2D e 3D foram desenvolvidos para dois conjuntos de dados de derivados benzotiofênicos como inibidores da enzima do parasita (PfNMT) e a homóloga humana (HsNMT). Além disso, estudos de modelagem por homologia da PfNMT foram conduzidos. Os estudos de QSAR 2D foram desenvolvidos pelo método de Holograma QSAR (HQSAR). O modelo estrutural de PfNMT foi aplicado na construção dos modelos QSAR 3D CoMFA (Comparative Molecular Field Analysis) e CoMSIA (Comparative Molecular Similarity Index Analysis). Os estudos de QSAR 3D foram conduzidos com diferentes métodos de cálculo de carga parcial atômica (Gasteiger-Hückel, MMFF94 e AM1-BCC, CHELPG e Mulliken) e de alinhamento molecular (Máxima Subestrutura Comum, alinhamento flexível e baseada no alvo molecular). Os melhores modelos construídos pelos métodos de QSAR 2D e 3D foram robustos, internamente consistentes e com elevada capacidade de predição da atividade de novos compostos contra a PfNMT. Os mapas de contribuição e de contorno geraram informações importantes sobre a relação estrutura-atividade dos compostos. Os resultados permitiram a identificação das bases moleculares responsáveis pela atividade dos inibidores benzotiofênicos e são úteis para o planejamento de novos inibidores mais potentes e seletivos para a enzima do parasita. / Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles spp. mosquitos. Due to the emerging resistance to current available drugs, great efforts for new molecular target and drugs are required. Recently, N-myristoyltransferase (NMT) was confirmed as an essential enzyme to malaria parasites and validated as a chemically tractable target for the development of new drug candidates against malaria. This work aimed to shed light on the molecular requirements underlying the inhibitory activity of benzothiophene derivatives against NMT. Therefore, 2D and 3D quantitative structure-activity relationship (QSAR) studies were developed for two datasets of benzothiophene derivatives as P. falciparum NMT (PfNMT) and the human homologue (HsNMT) inhibitors. Also, homology modeling studies for PfNMT were developed. The 2D QSAR studies were developed by the Hologram QSAR (HQSAR) method. The PfNMT structural model was applied in the construction of 3D QSAR models CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Index Analysis). Different molecular alignment (maximum common substructure, flexible alignment and structure based) and atomic partial charge calculation (Gasteiger-Hückel, MMFF94, AM1-BCC, CHELPG and Mulliken) methods were used to build the 3D QSAR models. The best models showed internal consistency and high predictive ability of biological activity against PfNMT. The contribution and contour maps gave important information about compounds structure-activity relationship. The results allowed the identification of the molecular requirements underlying the inhibitory activity and should be useful for the design of novel potent and selective PfNMT inhibitors as antimalarial drug candidates.
|
3 |
Assessment of N-myristoyltransferase and the N-myristoylomeas : a potential chemotherapeutic target in Trypanosoma cruziRoberts, Adam January 2014 (has links)
As there is a need for fully validated drug targets in <i>Trypanosoma cruzi</i>, the genetic andbiochemical essentiality of <i>N</i>-myristoyltransferase (NMT) was assessed. The geneticrequirement was assessed using a classical gene replacement strategy, attempting tosequentially replace the endogenous alleles with drug resistance genes to generate an<i>NMT</i> null parasite. It was only possible to achieve this in the presence of an ectopiccopy of <i>NMT</i> under constitutive expression, providing the strongest evidence that thisgene is essential for the proliferation of the epimastigote. While both NMT and <i>N</i>-myristoylationwere detected in all lifecycle stages, there were subtle differences in theexpression of several myristoylated proteins. However, at least ~10 myristoylatedproteins were common throughout the lifecycle. In addition, <i>N</i>-myristoylation in thisparasite was found to be primarily associated with nascent protein synthesis, astreatment with cycloheximide reduced the number of <i>N</i>-myristoylated proteins detected. The sensitivity of epimastigotes to the inhibitor DDD85646 correlated with theexpression of NMT, suggesting it to be the target in the parasite. This was confirmedby the dose-dependent depletion of <i>N</i>-myristoylated proteins detected in parasitestreated with this compound. Mechanism of action studies revealed a cytokinesis defectcaused by the inhibition of <i>N</i>-myristoylation and NMT. Overexpression of NMT wasable to rescue these cells from this phenotype confirming that it is NMT mediated. The<i>N</i>-myristoylated proteins comprising the <i>N</i>-myristoylome of the epimastigote wereidentified using the myristic acid analog, azidomyristate and a chemical proteomicsapproach. Combining label-free and SILAC methodologies, 38 proteins were enrichedfrom azidomyristate labelled cells, 35 of which were predicted to have a glycine afterthe initial methionine. The findings from these experiments have led to the mostcomprehensive <i>N</i>-myristoylome of <i>T. cruzi</i> studied to date and provide severalhypotheses, by which the inhibition of NMT leads to the observed cytokinesis defect.
|
4 |
Mechanisms of Lung Inflammation Following Exposure to Swine Barn AirCharavaryamath, Chandrashekhar 04 September 2008
Occupational exposure to endotoxin-rich swine barn air induces respiratory diseases and loss of lung function. Barn exposure induces recruitment of pulmonary intravascular monocytes/macrophages (PIMMs) and subsequent increased host sensitivity to <i>Escherichia coli</i> LPS challenge. Therefore, to further clarify the biology of PIMMs we examined the role of recruited PIMMs in a rat <i>Escherichia coli</i>-induced lung inflammation model. Following sepsis, lung inflammation was induced with recruitment of PIMMs and subsequently, <i>Escherichia coli</i> LPS challenge exacerbated the lung inflammation with localization of multiple inflammatory cytokines in PIMMs to suggest their possible involvement in modulating lung inflammation in this model.<p>
In order to delineate mechanisms of barn air induced lung dysfunction, a rat model of occupational exposure was characterized to show that one and five exposures to the barn environment induced acute lung inflammation and increased airway hyperresponsiveness (AHR). Following 20 exposures, AHR was dampened to indicate adaptive responses. Barn air contains high levels of endotoxin which led us to investigate its role in lung inflammation and AHR. Exposure of mice with either a functional TLR4 (WT) or non-functional TLR4 (mutants) to barn air revealed dependence of lung inflammation but not AHR on a functional TLR4.<p>
I investigated whether exposure to barn air alters host responses to a subsequent microbial challenge. Following one day barn exposure and <i>Escherichia coli</i> LPS challenge, lung inflammation was exacerbated with increased granulocytes and IL-1β levels compared to one day barn exposed rats without <i>Escherichia coli</i> LPS challenge. However, increased granulocytes and IL-1β levels in barn exposed and <i>Escherichia coli</i> LPS challenged rats were not different from control rats treated with <i>Escherichia coli</i> LPS indicating a lack of priming effect of barn exposure. However, above results are suggestive of an underlying risk of increased lung inflammation following secondary microbial infection in naïve barn workers.<p>
Lastly, I investigated the expression and activity of novel signalling molecules called <i>N</i>-myristoyltransferase and calcineurin in barn air and <i>E. coli</i> LPS induced lung inflammation models. Following one day barn exposure, increased protein expression but not activity of <i>N</i>-myristoyltransferase and calcineurin was shown. However, there is a need to identify the specific role of these two molecules in barn air induced lung inflammation. To conclude, animal models of barn exposure are useful tools to understand mechanisms of lung inflammation and AHR. However, there is still a need to examine endotoxin-independent nature of AHR and roles of other molecules of the innate immune system in regulating barn air induced effects.
|
5 |
Mechanisms of Lung Inflammation Following Exposure to Swine Barn AirCharavaryamath, Chandrashekhar 04 September 2008 (has links)
Occupational exposure to endotoxin-rich swine barn air induces respiratory diseases and loss of lung function. Barn exposure induces recruitment of pulmonary intravascular monocytes/macrophages (PIMMs) and subsequent increased host sensitivity to <i>Escherichia coli</i> LPS challenge. Therefore, to further clarify the biology of PIMMs we examined the role of recruited PIMMs in a rat <i>Escherichia coli</i>-induced lung inflammation model. Following sepsis, lung inflammation was induced with recruitment of PIMMs and subsequently, <i>Escherichia coli</i> LPS challenge exacerbated the lung inflammation with localization of multiple inflammatory cytokines in PIMMs to suggest their possible involvement in modulating lung inflammation in this model.<p>
In order to delineate mechanisms of barn air induced lung dysfunction, a rat model of occupational exposure was characterized to show that one and five exposures to the barn environment induced acute lung inflammation and increased airway hyperresponsiveness (AHR). Following 20 exposures, AHR was dampened to indicate adaptive responses. Barn air contains high levels of endotoxin which led us to investigate its role in lung inflammation and AHR. Exposure of mice with either a functional TLR4 (WT) or non-functional TLR4 (mutants) to barn air revealed dependence of lung inflammation but not AHR on a functional TLR4.<p>
I investigated whether exposure to barn air alters host responses to a subsequent microbial challenge. Following one day barn exposure and <i>Escherichia coli</i> LPS challenge, lung inflammation was exacerbated with increased granulocytes and IL-1β levels compared to one day barn exposed rats without <i>Escherichia coli</i> LPS challenge. However, increased granulocytes and IL-1β levels in barn exposed and <i>Escherichia coli</i> LPS challenged rats were not different from control rats treated with <i>Escherichia coli</i> LPS indicating a lack of priming effect of barn exposure. However, above results are suggestive of an underlying risk of increased lung inflammation following secondary microbial infection in naïve barn workers.<p>
Lastly, I investigated the expression and activity of novel signalling molecules called <i>N</i>-myristoyltransferase and calcineurin in barn air and <i>E. coli</i> LPS induced lung inflammation models. Following one day barn exposure, increased protein expression but not activity of <i>N</i>-myristoyltransferase and calcineurin was shown. However, there is a need to identify the specific role of these two molecules in barn air induced lung inflammation. To conclude, animal models of barn exposure are useful tools to understand mechanisms of lung inflammation and AHR. However, there is still a need to examine endotoxin-independent nature of AHR and roles of other molecules of the innate immune system in regulating barn air induced effects.
|
Page generated in 0.0692 seconds