• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Proteomic Response of Gill Tissue in Tidally and Subtidally-Acclimated California Mussels, Mytilus californianus, to Acute Emersion-Induced Anoxia

Fowler, Aubrie N, Tomanek, Lars 01 August 2016 (has links)
Intertidal mussels regularly experience emersion-induced anoxia, in contrast to normoxic conditions experienced during submersion. We therefore hypothesized that acclimation to a tidal rhythm, as opposed to a rhythm of constant submersion, preconditions the proteome of the California mussel, Mytilus californianus, to respond differently to emersion-induced anoxia. Following acclimation, mussels either continued to receive the acclimation conditions (control) or were exposed to 100% nitrogengas (anoxia) during aerial emersion. We collected gill tissue for subsequent analysis of protein abundance with 2D gel electrophoresis and protein identification with tandem mass spectrometry. Relative to subtidally-acclimated mussels, tidally-acclimated mussels showed a greater propensity to respond to distrupted protein homeostasis during emersion through higher levels of several small heat shock protein isoforms, while they showed lower levels of several chaperones involved in redox-sensitive protein maturation in the endoplasmic reticulum during acute anoxia. Several metabolic proteins showed elevated levels in tidally-acclimated mussels, suggesting a compensatory response to reduced feeding times. However, changes in the abundance of several tricarboxylic acid cycle enzymes (e.g. aconitase, succinate dehydrogenase) suggest that tidally-acclimated mussels are also primed to sense reactive oxygen species (ROS) and limit their production, respectively. These findings are further supported by higher abundances of several aldehyde dehydrogenases and thioredoxin peroxidase, which function as scavengers of aldehydes and ROS, common products of lipid peroxidation. Finally, tidally-acclimated mussels are also more responsive to changes in cytoskeletal and vesicular trafficking dynamics in response to acute anoxia. Together, our analysis showed that proteostasis, energy metabolism, oxidative stress and cytoskeletal and trafficking processes are all involved in priming tidally-acclimated mussels to respond more dynamically to acute emersion-induced anoxia in Mytilus gill.
2

Circadian and Circatidal Rhythms of Protein Abundance in the Intertidal Mussel Mytilus californianus

Elowe, Cory 01 December 2016 (has links) (PDF)
The intertidal zone is a dynamic environment that fluctuates with the 12.4-h tidal and 24-h light/dark cycle to predictably alter food availability, temperature, air exposure, wave action, oxygen partial pressure, and osmotic conditions. Intertidal sessile bivalves exhibit behavioral or physiological changes to minimize the persistent challenges of fluctuating environmental conditions, such as adjusting gaping behavior and heart rate. At the cellular level, transcriptomic studies on mussels’ baseline circadian and circatidal rhythms have determined that the circadian rhythm is the dominant transcriptional rhythm. However, as proteins reflect the basic molecular phenotype of an organism and their abundance may differ greatly from that of mRNA, these methods could fail to detect important cyclical changes in the proteome that cope with the regular stress of tidal rhythms. For this study, we acclimated intertidal Mytilus californianus to circadian (12:12 h light/dark cycle) and circatidal (6:6 h tidal cycle) conditions in a tidal simulator and sampled gill tissue from mussels every 2 h for 48 h for proteomic analysis. Approximately 86% of the proteins that were detected exhibited rhythmicity over the time course. The circadian cycle primarily determined the cyclic abundance of energy metabolism proteins, pivoting around the transition to the nighttime high tide. The tidal cycle contributed to alterations in cytoskeletal components, ER protein processing and vesicular trafficking, extracellular matrix and immune proteins, and oxidative stress and chaperoning proteins. We also found evidence that post-translational modifications may be important for driving these rhythms, as acetylation and phosphorylation motifs were enriched in the rhythmic proteins and we identified rhythms in elements of methylation, mitochondrial peptide processing, and acylation. These dynamic changes in proteins across numerous functional categories indicate that the combination of circadian and tidal cycles drive complex cellular changes to coordinate processes in a changing environment. This variation clearly shows that differential expression studies and biomonitoring efforts cannot assume a static baseline of cellular conditions in intertidal mussels.
3

The Effect Of Temperature Acclimation On The Stress Protein Sirtuin 5 In Intertidal And Subtidal Mussels (Mytilus Californianus) Using A Tide Simulator

Hardcastle, Alexandra E.S. 01 July 2024 (has links) (PDF)
The ability to acclimate to changing temperature has consequences for the biogeographic range of a species and their potential for surviving ocean warming. Using a tide simulator, which recreates tidal conditions by controlling water levels, water and air temperatures, light levels, and food availability, we explored how temperature and tidal zone (i.e. intertidal and subtidal) influences the abundance of sirtuin 5 (SIRT5) protein in a California native mussel (Mytilus californianus). We compared how gill tissue abundance of SIRT5, a key regulator of the cellular stress response and energy metabolism responded in M. californianus exposed to different temperature conditions (13, 16, 19 and 22°C) over a period of four weeks. Two SIRT5 isoforms, one a putative cytosolic form and the other a mitochondrial form were found to be expressed in mussel gill tissue. The mitochondrial isoform increased during acclimation to warm temperatures. This finding is the first to show how SIRT5 protein abundance changes with temperature acclimation. Surprisingly, we did not identify any differences in gill SIRT5 abundance between mussels from intertidal and subtidal locations. Our results suggest that characterizing the responses of SIRT isoforms may lead to a better understanding of the physiological diversity of sirtuins.

Page generated in 0.1693 seconds