• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting Subprime Customers' Probability of Default Using Transaction and Debt Data from NPLs / Predicering av högriskkunders sannolikhet för fallissemang baserat på transaktions- och lånedata på nödlidande lån

Wong, Lai-Yan January 2021 (has links)
This thesis aims to predict the probability of default (PD) of non-performing loan (NPL) customers using transaction and debt data, as a part of developing credit scoring model for Hoist Finance. Many NPL customers face financial exclusion due to default and therefore are considered as bad customers. Hoist Finance is a company that manages NPLs and believes that not all conventionally considered subprime customers are high-risk customers and wants to offer them financial inclusion through favourable loans. In this thesis logistic regression was used to model the PD of NPL customers at Hoist Finance based on 12 months of data. Different feature selection (FS) methods were explored, and the best model utilized l1-regularization for FS and predicted with 85.71% accuracy that 6,277 out of 27,059 customers had a PD between 0% to 10%, which support this belief. Through analysis of the PD it was shown that the PD increased almost linearly with respect to an increase in either debt quantity, original total claim amount or number of missed payments. The analysis also showed that the payment behaviour in the last quarter had the most predictive power. At the same time, from analysing the type II error it was shown that the model was unable to capture some bad payment behaviour, due to putting to large emphasis on the last quarter. / Det här examensarbetet syftar till att predicera sannolikheten för fallissemang för nödlidande lånekunder genom transaktions- och lånedata. Detta som en del av kreditvärdighetsmodellering för Hoist Finance. På engelska kallas sannolikheten för fallissemang för "probability of default" (PD) och nödlidande lån kallas för "non-performing loan" (NPL). Många NPL-kunder står inför ekonomisk uteslutning på grund av att de konventionellt betraktas som kunder med dålig kreditvärdighet. Hoist Finance är ett företag som förvaltar nödlidande lån och påstår att inte alla konventionellt betraktade "dåliga" kunder är högrisk kunder. Därför vill Hoist Finance inkludera dessa kunder ekonomisk genom att erbjuda gynnsamma lån. I detta examensarbetet har Logistisk regression används för att predicera PD på nödlidande lånekunder på Hoist Finance baserat på 12 månaders data. Olika metoder för urval av attribut undersöktes och den bästa modellen utnyttjade lasso för urval. Denna modell predicerade med 85,71 % noggrannhet att 6 277 av 27 059 kunder har en PD mellan 0 % till 10 %, vilket stödjer påståendet. Från analys av PD visade det sig att PD ökade nästan linjärt med avseende på ökning i antingen kvantitet av lån, det ursprungliga totala lånebeloppet eller antalet missade betalningar. Analysen visade också att betalningsbeteendet under det sista kvartalet hade störst prediktivt värde. Genom analys av typ II-felet, visades det sig samtidigt att modellen hade svårigheter att fånga vissa dåliga betalningsbeteende just på grund av att för stor vikt lades på det sista kvartalet.

Page generated in 0.034 seconds