• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis And Polymerization Of Bifunctional Five-membered Cyclic Dithiocarbonates And Their Use As Stabilizers For Magnetic Nan

Daoudi, Mohammed 01 January 2004 (has links)
Novel bifunctional five-membered cyclic dithiocarbonates (1,3-oxathiolane-2-thione)s were synthesized by the reactions of the corresponding bifunctional oxiranes (epoxides) with carbon disulfide at room temperature with lithium bromide as catalyst. Full characterization of these monomers was performed including elemental analysis, proton and carbon nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-mass spectroscopy, and Fourier transmission infrared (FTIR) spectroscopy. The polyaddition polymerization of 1,3-oxathiolane-2-thione with 1,4-diaminobutane at room temperature resulted in a poly(thiourethane) material. The latter undergoes crosslinking due probably to the autooxidation of the product and formation of disulfide linkages. The five-membered cyclic dithiocarbonate, 5-decyl-1,3-oxathiolane-2-thione, was used a model to demonstrate the usefulness of five-membered cyclic dithiocarbonates for the preparation of compounds bearing thiol and thiocarbamate groups. This functionality was desired for use as metallic nanoparticle stabilizers. A thermal decomposition oxidation method was used to synthesize the magnetic iron nanoparticles. The stabilized magnetic nanoparticles were characterized by transmission electron microscopy (TEM) to determine the shape and the size of the nanoparticles. Energy dispersive spectroscopy (EDS) was used to analyze the composition of the magnetic nanoparticles.
2

Design of Biomembrane-Mimicking Substrates of Tunable Viscosity to Regulate Cellular Mechanoresponse

Minner, Daniel Eugene 20 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Tissue cells display mechanosensitivity in their ability to discern and respond to changes in the viscoelastic properties of their surroundings. By anchoring and pulling, cells are capable of translating mechanical stimuli into a biological response through a process known as mechanotransduction, a pathway believed to critically impact cell adhesion, morphology and multiple cellular processes from migration to differentiation. While previous studies on polymeric gels have revealed the influence of substrate elasticity on cellular shape and function, a lack of suitable substrates (i.e. with mobile cell-substrate linkers) has hindered research on the role of substrate viscosity. This work presents the successful design and characterization of lipid-bilayer based cell substrates of tunable viscosity affecting cell-substrate linker mobility through changes in viscous drag. Here, two complementary membrane systems were employed to span a wide range of viscosity. Single polymer-tethered lipid bilayers were used to generate subtle changes in substrate viscosity while multiple, polymer-interconnected lipid bilayer stacks were capable of producing dramatic changes in substrate viscosity. The homogeneity and integrity of these novel multibilayer systems in the presence of adherent cells was confirmed using optical microscopy techniques. Profound changes in cellular growth, phenotype and cytoskeletal organization confirm the ability of cells to sense changes in viscosity. Moreover, increased migration speeds coupled with rapid area fluctuations suggest a transition to a different migration mode in response to the dramatic changes in substrate viscosity.

Page generated in 0.3199 seconds