• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An intracellular glucose biosensor based on nanoflake ZnO

Fulati, Alimujiang, Usman Ali, Syed M., Asif, Muhammad H., Hassan Alvi, Naveed Ul, Willander, Magnus, Brännmark, Cecilia, Strålfors, Peter, Börjesson, Sara I., Elinder, Fredrik, Danielsson, Bengt January 2010 (has links)
In this study, an improved potentiometric intracellular glucose biosensor was fabricated with immobilization of glucose oxidase on a ZnO nanoporous material. The ZnO nanoporous material with a wall thickness around 200 nm was grown on the tip of a borosilicate glass capillary and used as a selective intracellular glucose sensor for the measurement of glucose concentrations in human adipocytes and frog oocytes. The results showed a fast response within 4 s and a linear glucosedependent electrochemical response over a wide range of glucose concentration (500 nM-10 mM). The measurements of intracellular glucose concentrations with our biosensor were consistent with the values of intracellular glucose concentrations reported in the literature. The sensor also demonstrated its capability by detecting an increase in the intracellular glucose concentration induced by insulin. We found that the ZnO nanoporous material provides sensitivity as high as 1.8 times higher than that obtained using ZnO nanorods under the same conditions. Moreover, the fabrication method in our experiment is simple and the excellent performance of the developed nanosensor in sensitivity, stability, selectivity, reproducibility and anti-interference was achieved. All these advantageous features of this intracellular glucose biosensor based on functionalised ZnO nanoporous material compared to ZnO nanorods demonstrate a promising way of enhancing glucose biosensor performance to measure reliable intracellular glucose concentrations within single living cells. / <p>Original Publication:Alimujiang Fulati, Syed M. Usman Ali, Muhammad H. Asif, Naveed Ul Hassan Alvi, Magnus Willander, Cecilia Brännmark, Peter Strålfors, Sara I. Börjesson and Fredrik Elinder, An intracellular glucose biosensor based on nanoflake ZnO, 2010, Sensors and actuators. B, Chemical, (150), 2, 673-680.http://dx.doi.org/10.1016/j.snb.2010.08.021Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com/</p>

Page generated in 0.0472 seconds