• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory for ballistic magnon transport across disordered magnetic nanojunctions / Théorie de transport balistique de magnon à travers des nanojonctions magnétiques désordonnés

Ghader, Doried 20 September 2013 (has links)
L'objectif de cette thèse est de développer des méthodes théoriques et numériques pour calculer la diffusion d'ondes de spin et leur transport balistique à travers deux types de nanomatériaux magnétiques désordonnés de terres rares - métaux de transition, à savoir le cobalt-gadolinium et le fer-gadolinium, comme éléments constitutifs des systèmes de nanojunctions. La modélisation développée dans ce travail décrit proprement les conséquences du désordre caractéristique de ces systèmes, à savoir de type alliage et celui de type structurel. Les méthodes théoriques et numériques développées servent en particulier à explorer les attributs de ces nanojonctions comme des filtres et des éléments de transmission assistée par résonance dans des dispositifs magnoniques. La thèse développe une version dynamique et non-locale pour l'approximation du potentiel (DNLCPA) afin d'étudier la dynamique de spin des systèmes ultraminces magnétiques désordonnés Fe-Gd et Co-Gd. Les potentiels aléatoires dynamiques de diffusion sont dérivés d'une manière inédite, exploitant les propriétés de phase des excitations de spin élémentaires dans le cadre du formalisme de Dyson. La méthode théorique est ensuite développée en deux manières fondamentales différentes, pour l'appliquer convenablement aux nano systèmes désordonnés qui présentent les types de désordre alliage et structurel. L'approche DNLCPA est ensuite conjuguée avec la théorie de raccordement de phase des champs (PFMT) pour étudier le transport balistique d'ondes de spin à travers les nanojonctions Co-Gd et Fe-Gd entre des gUides d'ondes de Co et Fe respectivement. L'approche PFMT-DNLCPA donne pour la première fois une modélisation des propriétés de diffusion et de transport d'ondes de spin incidents sur les nanojonctions, elle réussit à démontrer, modéliser et à quantifier la perte d'énergie en diffusion balistique due à chaque type de désordre. / The aim of this thesis is to develop theoretical and numerical methods to analyze the ballistic spin waves scattering and transport across two types of rare earth - transition metals disordered magnetic nanomaterials, namely the cobalt-gadolinium and the iron-gadolinium types, as building blocks for nanojunction systems. The theoretical computations developed in this work account properly for the consequences of the characteristic disorder present in these systems, whether alloy disorder for the former or structural amorphous-like disorder for the latter. The developed methods serve, in particular, to explore the attributes of these nanojunctions as filters and elements for resonance assisted transmission in a magnonic device. The thesis develops a novel and dynamic non-local version of the coherent potential approximation (DNLCPA), to study the spin dynamics on disordered ultrathin Co-Gd and Fe-Gd magnetic systems. The dynamic random scattering potentials are derived in a completely novel approach, exploiting the phase properties of the elementary spin excitations within the Dyson formalism. This approach is then developed in two different fundamental manners, and applied appropriately for the disordered nanosystems presenting alloy and structural disorder. The DNLCPA approach is incorporated with the phase field matching theory (PFMT) to study the spin waves ballistic transport across the Co-Gd and the Fe-Gd nanojunctions, sandwiched between Co and Fe leads respectively. This PFMT-DNLCPA method yields for the first time the description of the scattering and transport properties for the spin waves incident on the nanojunctions. Furthermore, our computations successfully demonstrate, model and quantify the diffusive energy loss in ballistic scattering due to each type of disorder.
2

Electrical and Optical Characterization of Molecular Nanojunctions

January 2011 (has links)
Electrical conduction at the single molecule scale has been studied extensively with molecular nanojunctions. Measurements have revealed a wealth of interesting physics. I3owever; our understanding is hindered by a lack of methods for simultaneous local imaging or spectroscopy to determine the conformation and local environment of the molecule of interest. Optical molecular spectroscopies have made significant progress in recent years, with single molecule sensitivity achieved through the use of surface-enhanced spectroscopies. In particular surface-enhanced Raman spectroscopy (SERS) has been demonstrated to have single molecule sensitivity for specific plasmonic structures. Many unanswered quest ions remain about the SERS process, particularly the role of chemical enhancements of the Raman signal. The primary goal of the research presented here is to combine both electrical and optical characterization techniques to obtain a more complete picture of electrical conduction at the single or few molecule level. We have successfully demonstrated that nanojunctions are excellent SERS substrates with the ability to achieve single molecule sensitivity. This is a major accomplishment with practical applications in optical sensor design. We present a method for mass producing nanojunctions with SERS sensitivity optimized through computer modeling. We have demonstrated simultaneous optical and electrical measurements of molecular junctions with single molecule electrical and SERS sensitivity. Measurements show strong correlations between electrical conductance and changes to the SERS response of nanojunctions. These results allow for one of the most conclusive demonstrations of single molecule SERS to date. This measurement technique provides the framework for three additional studies discussed here as well as opening up the possibilities for numerous other experiments. One measurement examines heating in nanowires rather than nanojunctions. We observe that, the electromigration process used to turn Pt nanowires into nanojunctions heats the wires to temperatures in excess of 1000 K, indicating that thermal decomposition of molecules on the nanowire is a major problem. Another measurement studies optically driven currents in nanojunctions. The photocurrent is a result of rectification of the enhanced optical electric field in the nanogap. From low frequency electrical measurements we are able to infer the magnitude of the enhanced electric field, with inferred enhancements exceeding 1000. This work is significant to the field of plasmonics and shows the need for more complete quantum treatments of plasmonic structures. Finally we investigate electrical and optical heating in molecular nanojunctions. Our measurements show that molecular vibrations and conduction electrons in nano-junctions under electrical bias or laser illumination can be driven from equilibrium to temperatures greater than 600 K. We observe that individual vibrations are also not in thermal equilibrium with one another. Significant heating in the conduction electrons in the metal electrodes was observed which is not expected in the ballistic tunneling model for electrons in nanojunctions this indicates a need for a more completely energy dissipation theory for nanojunctions.

Page generated in 0.084 seconds