• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 114
  • 109
  • 82
  • 36
  • 25
  • 25
  • 14
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1203
  • 172
  • 156
  • 133
  • 100
  • 95
  • 89
  • 86
  • 84
  • 84
  • 83
  • 80
  • 80
  • 78
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Development and Characterization of a Liposome Imaging Agent

Zheng, Jinzi 08 March 2011 (has links)
Applied cancer research is heavily focused on the development of diagnostic tools with high sensitivity and specificity that are able to accurately detect the presence and anatomical location of neoplastic cells, as well as therapeutic strategies that are effective at curing or controlling the disease while being minimally invasive and having negligible side effects. Recently, much effort has been placed on the development of nanoparticles as diagnostic imaging and therapeutic agents, and several of these nanoplatforms have been successfully adopted in both the research and clinical arenas. This thesis describes the development of a nanoparticulate liposome system for use in a number of applications including multimodality imaging with computed tomography (CT) and magnetic resonance (MR), longitudinal vascular imaging, image-based biodistribution assessment, and CT detection of neoplastic and inflammatory lesions. Extensive in vitro and in vivo characterization was performed to determine the physico-chemical properties of the liposome agent, including its size, morphology, stability and agent loading, as well as its pharmacokinetics, biodistribution, tumor targeting and imaging performance. Emphasis was placed on the in vivo CT-based quantification of liposome accumulation and clearance from healthy and tumor tissues in a VX2 carcinoma rabbit model, gaining insight not only on the spatial but also the temporal biodistribution of the agent. The thesis concludes with a report that describes the performance of liposomes and CT imaging to detect and localize tumor and inflammatory lesions as compared to that of 18F-fluorodeoxyglucose (FDG) – positron emission tomography (PET). The outcome of the study suggests that liposome-CT could be employed as a competitive method for whole body image-based disease detection and localization. Overall, this work demonstrated that this liposome agent along with quantitative imaging systems and analysis tools, has the potential to positively impact cancer treatment outcome through improved diagnosis and staging, as well as enable personalization of treatment delivery via target delineation. However, in order to prove clinical benefit, steps must be taken to advance this agent through the regulatory stages and obtain approval for its use in humans. Ultimately, the clinical adoption of this multifunctional agent may offer improvements for disease detection, spatial delineation and therapy guidance.
492

Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized Zirconia

Kim, Jong Min 23 November 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
493

Microstructuring inkjet-printed deposits from silver nanoparticules coalescence to the fabrication of interconnections for electronic devices.

Cauchois, Romain 07 February 2012 (has links) (PDF)
Several challenges are still holding back the technological transfer of printed electronics to industry in spite of recent progresses. In this thesis work, the printing method of inks based on silver nanoparticles (<Ø>=25 nm) was optimized according to its rheology and to the fluid/substrate interactions for the fabrication of electrical interconnections with a thickness of 500 nm. These lines were printed on silicon or flexible substrates and annealed either by conventional (oven or infrared) or selective methods (microwave) at temperatures comprised between 100 and 300 °C.A better understanding of the relationship between process and microstructure of these printed thin films, based on several crystallographic equipments (XRD, EBSD and EDX), led to the optimization of nanocrystallites growth with an activation energy of about 3 to 5 kJ*mol-1. In addition to the low residual stress (70 MPa), this optimization is used to achieve low electrical resistivity (3.4 μOhm*cm) associated with a greater coherence of the crystal lattices at grain boundaries. The probability of electron scattering at such interfaces can be further reduced using an innovative approach of oriented crystallite growth by atomic interdiffusion from the substrate.The low mechanical stiffness (E<50 GPa) of these porous lines requires a reinforcement step either by crystalline texturation or by electroless growth to withstand the assembly and wire-bonding steps. The fabrication of a functional demonstrator thus validated the printing technology for the manufacture of electronic components.
494

Dielectric Properties of Epoxy/Alumina Nanocomposite Influenced by Control of Micrometric Agglomerates

Hayakawa, Naoki, Takei, Masafumi, Hoshina, Yoshikazu, Hanai, Masahiro, Kato, Katsumi, Okubo, Hitoshi, Kurimoto, Muneaki 06 1900 (has links)
No description available.
495

Permittivity Characteristics of Epoxy/Alumina Nanocomposite with High Particle Dispersibility by Combining Ultrasonic Wave and Centrifugal Force

Hayakawa, Naoki, Takei, Masafumi, Hoshina, Yoshikazu, Hanai, Masahiro, Kato, Katsumi, Okubo, Hitoshi, Kurimoto, Muneaki 05 August 2010 (has links)
No description available.
496

Study of the morphology control and solid solution behaviour of Olivine LiMPO4 (M = Fe, Mn, and Co)

Kan, Wang Hay January 2009 (has links)
Lithium iron phosphate (LiFePO4) is one of the most promising cathode materials for lithium ion rechargeable batteries. It has a high theoretical specific capacity (170 mAh/g) and operating potential (3.45 V vs. Li+/Li). Additionally, the material is extremely stable thermally and electrochemically at ambient conditions, which is very suitable to be used in electric vehicles. However, the electronic and ionic conductivities of the material are quite low, which limits the power performance of the batteries. In the last decade, extensive work was reported on various methods to improve the electronic conductivity extrinsically, for example carbon coating, metallic additives and molecular wiring. Nevertheless, energy density of the cells will be reduced because of non-electrochemically active nature of the additives. In principle, electronic and ionic conductivities can be boosted intrinsically. One of the methods is to increase the number of charge carriers in the material, for instance in two-phase solid solution system LiαFePO4/Li1-βFePO4 or single solid solution phase LixFePO4. Since the formation of solid solution has been reported to be size dependent, it is highly desired to know how to synthesize LiFePO4 particles with different sizes. In this study, we have used hydrothermal synthesis and polyol process to control the size of LiMPO4 (M: Fe, Mn, and Co) particles. We will present how we prepare particles with different sizes. Moreover, the solid solution properties of various sizes of LiMPO4 (M: Mn and Fe) were studied. The result will be presented. Part of the preliminary findings have been published in the peer-reviewed journals or conference presentations: 1) Journal of Materials Chemistry [Ellis B.; Kan W. H.; Makahnouk W. R. M.; Nazar L. F. J. Mater. Chem. 2007, 17 (30) 3248., 2) Journal of the American iv Chemical Society [Lee K. T.; Kan W. H.; Nazar L. F. J. Am. Chem. Soc. (submitted)], 3) Material Research Society Meeting [Kan W. H.; Maunders C.; Badi S.; Ellis B.; Botton G.; Nazar L. F. MRS Fall Meeting 2008 in Boston]
497

Strong Coupling of Gold Nanoparticle Plasmons on Quasi One-Dimensional Assemblies

Slaughter, Liane 16 September 2013 (has links)
Single particle microscopy and spectroscopy strategies reveal hidden relationships between the surface plasmon resonances (SPRs) and the sizes, shapes, and arrangements of gold nanoparticles (Au NPs). The SPR, the coherent oscillation of the conduction electrons, leads to intense absorption and scattering of light at frequencies satisfying the resonance condition determined by the size, shape, and spacings between NPs. Growing and assembling NPs through wet chemistry yields a diversity of geometries. Together, optical spectroscopy, scanning electron microscopy (SEM), and computational modeling of individual NPs and NP assemblies elucidate the resulting variety of SPRs. Strong coupling of the SPRs in linear assemblies provokes particular interest for tunable structures that will benefit surface enhanced spectroscopies and optical computing. The influence of the constituents and imperfections in such assemblies, which deviate from idealized model systems, must be established one assembly at a time. This thesis demonstrates previously unknown and sensitive relationships between the SPRs and these geometric parameters through systematic single particle experiments of self-assembled ring superstructures, nanorod dimers, individual nanorods populating different size regimes, and short linear chains of Au NPs through single particle spectroscopy. Dark-field scattering of self-assembled ring superstructures of 40 nm Au NPs reveals new plasmon modes that are redshifted from the single NP SPR by hundreds of nanometers, highly polarized along the axis of alignment, and indifferent to irregularities in the NP arrangement. SPRs of Au nanorod dimers, however, are dramatically altered by NP size heterogeneity, reduced symmetry, and metallic contact, consistent with previous studies of small assemblies. Broad band single particle extinction measurements of individual Au nanorods and short chains of 200-1000 nm long demonstrate the importance of the overall dimensions of an NP or an assembly of NPs. Finally, extinction measurements of these chains provide a compelling comparison to chemical polymers via the redshifting of the lowest energy SPR, tolerance to disorder, and the influence of the repeat unit. This result extends already well-defined analogies between plasmonic assemblies and chemical molecules to the ‘plasmonic polymer’. The findings presented in this thesis bring deeper and more detailed understanding to the tunable optical properties of real NP assemblies.
498

Bleach Imaged Plasmon Propagation (BlIPP) of Metallic Nanoparticle Waveguides

Solis, David 16 September 2013 (has links)
The high speed transfer of information in materials with dimensions below the sub-diffraction limit is essential for future technological developments. Metallic nanoparticle (NP) waveguides serve a unique role in efficient energy transfer in this size regime. Light may be confined to metallic structures and propagate along the surface of the waveguide via propagating plasmon waves known as surface plasmon polaritons (SPPs). Plasmon propagation of energy in metallic structures is not perfect however and damping losses from the waveguide material lead to a characteristic exponential decay in the plasmon near field intensity. This decay length is known as the propagation length and serves as an excellent metric to compare various waveguide materials and structures to one another at particular excitation wavelengths. This thesis presents recent work in the development of a novel measurement technique termed bleach imaged plasmon propagation (BlIPP). BlIPP uses the photobleaching property of fluorophores and far field fluorescence microscopy to probe the near-field intensity of propagating plasmons and determine the propagation length. The experimental setup, image analysis, conditions, and application of BlIPP are developed within this thesis and an in depth review of the 1-photon photobleaching mechanism is also investigated. The BlIPP method is used to investigate long plasmon propagation lengths along straight chains of tightly packed Au NPs through the coupling of light to sub-radiant propagating modes, where radiative energy losses are suppressed. The findings of this work reveal, experimentally, the importance of small gap distances for the propagation of energy. Complex chain architectures are then explored using BlIPP measurements of tightly packed straight and bent chains of spherical silver NPs. We observe the highly efficient propagation of energy around sharp corners with no additional bending losses. The findings of this thesis demonstrate the advantages and capabilities of using BlIPP propagation length measurement. Further, BlIPP is used to reveal the advantage of coupling light to sub-radiant modes of NP chains, which demonstrate the ability to guide light efficiently across long distances and around complex structures, bringing us a step closer to the goal of applying plasmonic devices and circuitry in ultra compact opto-electronic devices.
499

Single Particle Studies on the Influence of the Environment on the Plasmonic Properties of Single and Assembled Gold Nanoparticles of Various Shapes

Swanglap, Pattanawit 16 September 2013 (has links)
Plasmonic nanoparticles and their assembly have the potential to serve as a platform in practical applications such as photonics, sensing, and nano-medicine. To use plasmonic nanoparticles in these applications, it is important to understand their optical properties and find methods to control their optical response. Using polarization-sensitive dark-field spectroscopy to study self-assembled nanoparticle rings on substrates with different permittivities I show that the interaction between collective plasmon resonances and the substrate can control the spatial scattering image. Using liquid crystals as an active medium that can be controlled with an external electric field I show that the Fano resonance of an asymmetric plasmonic assembly can be actively controlled utilizing the polarization change of scattered light passing through the liquid crystal device. Furthermore, utilizing the strong electromagnetic field enhancement of coupled plasmonic “nanospikes” on the surface of gold nanoshells with a silica core, I show the use of single spiky nanoshells as surface-enhanced Raman spectroscopy substrates. Individual spiky nanoshells give surprisingly reproducible surface-enhanced Raman spectroscopy intensities with a low standard deviation compared to clusters of nanoparticles. In summary, the work presented here provides understanding of the plasmonic response for assembled nanoparticles on different substrates, illustrated a new method to actively control the optical response of plasmonic nanoparticles, and characterizes spiky nanoshells as surface-enhanced Raman scattering platform.
500

High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

Vigderman, Leonid 16 September 2013 (has links)
This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruit-shaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surface-enhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTAB-functionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.

Page generated in 0.0691 seconds