1 |
Formulation of chitosan-based nanoparticles for delivery of proteins and peptidesVellore Janarthanan, Mohanraj January 2003 (has links)
Delivery of complex molecules such as peptides, proteins, oligonucleotides and plasmids is an intensively studied subject, which has attracted considerable medical and pharmaceutical interest. Encapsulation of these molecules with biodegradable polymers represents one way of overcoming various problems associated with the conventional delivery of macromolecules, for example instability and short biological half-life. The use of carriers made of hydrophilic polysaccharides such as chitosan, has been pursued as a promising alternative for improving the transport of biologically active macromolecules across biological surfaces. The development of nanoparticles as a delivery system also has major advantages of achieving possible drug protection, controlled release and drug targeting by either a passive or an active means. The aim of this study was to develop a simple and effective method to formulate biodegradable nanoparticles for the delivery of a model protein-bovine serum albumin (BSA) and an angiogenesis inhibitor, arginine-rich hexapeptide (ARE peptide). Major factors which determine nanoparticle formation and loading of the protein and the peptide as well as the underlying mechanisms controlling their incorporation and release characteristics were investigated. The preparation technique, based on the complex coacervation process, is extremely mild and involves the mixture of two aqueous solutions (chitosan and dextran sulfate) at room temperature. The formation of nanoparticles is dependent on the concentrations of chitosan (CS) and dextran sulfate (DS); particles with size, of 257 to 494nm can be obtained with 0.1%w/v solutions of CS and DS. Zeta potential of nanoparicles can be modulated conveniently from -34.3mV to +52.7mV by varying the composition of the two ionic polymers. / Both bovine BSA and the ARH peptide were successfully incorporated into CS-based nanoparticles, mainly via an electrostatic interaction, with entrapment efficiency up to 100% and 75.9% for the protein and peptide respectively. Incorporation of both the protein and peptide into nanoparticles resulted in an increase in size suggesting their close association with the nanoparticle matrix material. The difference in sign and magnitude of zeta potential of empty and macromolecules-loaded nanoparticles supports the hypothesis that protein and peptide association with nanoparticles can be modulated by their ionic interaction with the oppositely charged ionic polymer (DS) in the nanoparticles. The release of BSA from the nanoparticles was very slow in water compared to that in l0mM phosphate buffer pH 7.4; whereas, ARH peptide showed extremely low level of release in water at the low ratio of DS but at the high ratio of DS, its release was in biphasic fashion, with an initial burst effect followed by an almost constant but very slow release up to 7 days in both water and 1 OmM phosphate buffer (pH 7.4). It was found that, unlike ARH peptide, the percentage of BSA released was relatively slower for the nanoparticles with a high ratio of DS. It is speculated that this difference in the release behaviour of BSA and ARH peptide, could be due to the effect of molecular size of the compounds and their interaction with the polymer matrix of the nanoparticle. The results of this study suggest that these novel CS/DS nanoparticulate system, prepared by a very mild ionic crosslinking technique, have potential to be a suitable carrier for the entrapment and controlled release of peptides and proteins.
|
2 |
Magnetic drug targeting Development of a novel drug delivery system for prostate cancer therapy/Rahimi, Maham. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.
|
3 |
PNIPAAM Immobilized Nanoparticles for Posterior Ocular Delivery., PAYAL January 2020 (has links)
Ocular drug delivery to the posterior segment of the eye is extremely challenging. The delivery of the pharmaceuticals is made difficult by the numerous barriers that are present in the eye, as well as the isolated nature of the eye. The eye also consists of efficient drainage routes that eliminate the drug that has entered the eye successfully. Because of these reasons, drug delivery to the posterior segment of the eye is challenging and complicated. As a result, conventional eye drops are an inefficient way to deliver the pharmaceuticals to the eye as <5% of the administered dose is delivered to the anterior segment of the eye, and a negligible amount is delivered to the posterior tissues. The work presented in this thesis focuses on the design, synthesis, and characterization of the PLGA nanoparticles as a drug delivery vehicle to treat diseases associated with the posterior segment of the eye. The slow-release formulation was developed using PLGA nanoparticles and synthesized by the Double Emulsion Method (W1-O-W2). The PLGA nanoparticles were optimized by following various protocols and formulations to obtain the highest encapsulation efficacy and desired particle size range by changing the intensity of sonication, speed of ultracentrifugation, composition, and amount of the stabilizer and PLGA nanoparticles. The nanoparticles showed a 97% encapsulation efficiency with Bovine Serum Albumin (BSA) and a particle size of 201 nm. The slow-release formulation was further developed by immobilization of the particles in a thermogelling PNIPAAM scaffold. In vitro drug release results suggest that PNIPAAM containing PLGA nanoparticles produced in this work has the potential to be further developed and used as a drug delivery vehicle for the posterior segment of the eye. / Thesis / Master of Applied Science (MASc)
|
4 |
Applying native chemical ligation to the development of magnetically-responsive drug delivery platforms for biomedical applicationsCamarillo López, Raúl Horacio January 2017 (has links)
The potential of magnetic nanoparticle-vesicle assemblies (MNP-V) as remote controlled drug delivery platforms capable of inducing cellular responses under magnetic stimuli has been previously demonstrated in the Webb group at the University of Manchester. To create these magnetoresponsive nanomaterials biotin-avidin and Cu-histidinyl multivalent recognition were employed. This thesis describes an exploration of the potential of thiol-thioester exchange reactions (leading to native chemical ligation, NCL) to create magnetoresponsive materials, which potentially have applications in biomedicine. Firstly, iron oxide magnetic nanoparticles have been synthesised using a thermal co-precipitation method followed by chemical modification with sulfhydryl motifs for use as smart biomaterials. Knowing that the behaviour and reactivity of nanoparticles is highly influenced by their physicochemical properties, a thourough characterisation of these particles has been obtained. Secondly, during this project, several thioester derivatives have been synthesised that can be incorporated into the membranes of 800 nm liposomes. Among these, the spectrophotometric properties of synthetic lipid 38 allowed the investigation of trans-thioesterification rates with cysteinyl functionalities, both in solution and at the phospholipid membrane interface of liposomes. Product identification has been achieved using mass spectrometry and 1H-NMR spectroscopy. Finally, the conditions required to induce the release of a dye (e.g. 5(6)-CF) from MNP-V upon exposure to an AMF pulse have been established. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases has been investigated as interesting payload due to its fluorescent and anti-viral properties.
|
5 |
Development of Amino Acid Based Zwitterionic Materials for Biomedical and Environmental ApplicationsLi, Wenchen January 2017 (has links)
No description available.
|
6 |
Comparison Study of Nanoparticle and Cyclophosphamide Deposition in Olfactory Region between Microfluidic Device and Nasal CavityFadul, Gabrielle Nicole 18 December 2019 (has links)
No description available.
|
7 |
Mesoporous Silica Nanoparticles Enhance the Anticancer Efficacy of Platinum(IV)-Phenolate Conjugates in Breast Cancer Cell LinesPredarska, Ivana, Saoud, Mohamad, Draca, Dijana, Morgan, Ibrahim, Komazec, Teodora, Eichhorn, Thomas, Mihajlovi, Ekatarina, Dunderovic, Duško, Mijatovic, Sanja, Maksimovic-Ivanic´, Danijela, Hey-Hawkins, Evamarie, Kaluderovic, Goran N. 20 September 2024 (has links)
The main reasons for the limited clinical efficacy of the platinum(II)-based agent cisplatin
include drug resistance and significant side effects. Due to their better stability, as well as the
possibility to introduce biologically active ligands in their axial positions constructing multifunctional
prodrugs, creating platinum(IV) complexes is a tempting strategy for addressing these limitations.
Another strategy for developing chemotherapeutics with lower toxicity relies on the ability of
nanoparticles to accumulate in greater quantities in tumor tissues through passive targeting. To
combine the two approaches, three platinum(IV) conjugates based on a cisplatin scaffold containing
in the axial positions derivatives of caffeic and ferulic acid were prepared and loaded into SBA-
15 to produce the corresponding mesoporous silica nanoparticles (MSNs). The free platinum(IV)
conjugates demonstrated higher or comparable activity with respect to cisplatin against different
human breast cancer cell lines, while upon immobilization, superior antiproliferative activity with
markedly increased cytotoxicity (more than 1000-fold lower IC50 values) compared to cisplatin was
observed. Mechanistic investigations with the most potent conjugate, cisplatin-diacetyl caffeate (1),
and the corresponding MSNs (SBA-15|1) in a 4T1 mouse breast cancer cell line showed that these
compounds induce apoptotic cell death causing strong caspase activation. In vivo, in BALB/c mice,
1 and SBA-15|1 inhibited the tumor growth while decreasing the necrotic area and lowering the
mitotic rate.
|
Page generated in 0.1127 seconds