• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controls Algorithm For A Satellite Using Earth's Magnetic Field: Orbit Maneuvers And Attitude Positioning

Ganesh, Karthik 01 January 2007 (has links)
This document describes the design, analysis of Orbit Maneuvers and Attitude Control for NanoSat class satellites, which uses an electro-magnetic force controller which was proposed by the Florida Space Institute (FSI). Orbit Maneuvering and the Attitude Control System (ACS) play a very important role for the success of this mission, as that can allow making the satellite go to the desired orbit as well do the sun pointing of the solar arrays with su¢ cient accuracy to achieve desired power levels. The primary mission would be to attain attitude stabilization using the torque from the coils. This is also used for pointing at the direction of the sun, for achieving desired power levels. The secondary mission would be to use the force of the magnetic field and utilize that for orbit maneuvering, and attain the desired trajectory. This thesis gives a presentation of this detailed analysis with a simulation using Matlab/Simulink. Mathematical model of the actuators and sensors used for this satellite are designed, so that the simulation gives us results very near to the actual ones.Health Monitoring is also one of the main issues addressed in this work. This simulation helps us in understanding the mission as well as the requirements very well, and helps us know all the shortcomings. The FUNSAT satellite is modeled as an example in Simulink together with a Kalman filter for attitude estimation based on all sensor measurements. The theory behind this, and extending the Kalman filter, is also presented.
2

Testovací metody pro hodnocení radiačních efektů v přesných analogových a signálově smíšených obvodech pro aplikace v kosmické elektronice / Test Methods for Evaluation of Radiation Effects in High Precision Analog and Mixed-Signal Devices for Space Applications

Hofman, Jiří January 2019 (has links)
The traditional radiation testing of space electronics has been used for more than fifty years to support the radiation hardness assurance. Its typical goal is to ensure reliable operation of the spacecraft in the harsh environment of space. This PhD research looks into the radiation testing from a different perspective; the goal is to develop radiation testing methods that are focused not only on the reliability of the components but also on a continuous radiation-induced degradation of their performance. Such data are crucial for the understanding of the impact of radiation on the measurement uncertainty of data acquisition systems onboard research space missions.

Page generated in 0.4582 seconds