• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanovlákenné separátory pro lithium-iontové akumulátory / Nanofibrous Separators for Lithium-Ion Batteries

Pléha, David January 2018 (has links)
Nanofibrous separators use in lithium-ion batteries brings many advantages. In contrast to contemporary used commercial separators, nanofibrous ones exhibit higher temperature resistance,ionic conductivity and higher electrolyte uptake. Better ionic conductivity is ensured by porous structure and large specific surface. Fibers creates channels for the ionic species motion. Amorphous texture of nanofibers allows quick lithium ionic species motion within the polymeric matrix of separator. Furthermore, these separators exhibit higher volume of uptaken electrolyte. Further advantage of electrospinned nanofibrous separators are both high porosity and chemical stability.
2

Reologické chování roztoků polymeru vhodných pro elektrostatické zvlákňování / The Rheological Behavior of Polymer Solutions Suitable for Electrospinning

Divínová, Nikol January 2017 (has links)
This diploma thesis deals with preparation and characterization of aqueous solutions of polyvinyl alcohol suitable for electrospinning. In the theoretical part method of electrospinning is described, including parameters which influence this process. Literary research also includes a chapter about rheology, which deals with the rheological properties of polymers, specifically PVA. The experimental part describes the preparation and rheological study of of aqueous solutions of polyvinyl alcohol, which were then spun. The morphology of prepared nanofibers was studied by using scanning electron microscopy (SEM). The effect of molecular weight, the solvent, concentration of solution, rheological properties, electrical conductivity and surface tension on the spinability, diameter and morphology of nanofibers is discussed.

Page generated in 0.0481 seconds