Spelling suggestions: "subject:"nanostruktur"" "subject:"nanostruktury""
1 |
Strukturování plazmových polymerů: nové metody přípravy tenkých vrstev s nano-architekturou / Structuring of plasma polymers: new methods for fabrication of nano-architectured thin filmsNikitin, Daniil January 2019 (has links)
Title: Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films Author: Daniil Nikitin Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Doc. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics/Charles University Abstract: The PhD thesis aims at the investigation of nanostructures based on plasma polymers. The main attention is paid to the combination of a gas aggregation cluster source with plasma-assisted vapor phase deposition for the fabrication of metal-polymer nanocomposites with bactericidal potential. Copper nanoparticles were incorporated into a biocompatible matrix of plasma polymerized poly(ethylene oxide) (ppPEO). The efficiency of such nanocomposite against multi-drug resistant bacteria was demonstrated. It was found that the segmental dynamics of the plasma polymer significantly changed in the presence of nanoparticles as revealed by the measurements of the dynamic glass transition temperature. The nanoscale confinement crucially influences the non-fouling properties of poly(ethylene oxide). A separate chapter is dedicated to the examination of the nanoparticle formation, growth and transport inside the source. Copper and silver nanoparticles were detected in situ in the gas phase...
|
2 |
Strukturování plazmových polymerů: nové metody přípravy tenkých vrstev s nano-architekturou / Structuring of plasma polymers: new methods for fabrication of nano-architectured thin filmsNikitin, Daniil January 2019 (has links)
Title: Structuring of plasma polymers: new methods for fabrication of nano-architectured thin films Author: Daniil Nikitin Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Doc. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics/Charles University Abstract: The PhD thesis aims at the investigation of nanostructures based on plasma polymers. The main attention is paid to the combination of a gas aggregation cluster source with plasma-assisted vapor phase deposition for the fabrication of metal-polymer nanocomposites with bactericidal potential. Copper nanoparticles were incorporated into a biocompatible matrix of plasma polymerized poly(ethylene oxide) (ppPEO). The efficiency of such nanocomposite against multi-drug resistant bacteria was demonstrated. It was found that the segmental dynamics of the plasma polymer significantly changed in the presence of nanoparticles as revealed by the measurements of the dynamic glass transition temperature. The nanoscale confinement crucially influences the non-fouling properties of poly(ethylene oxide). A separate chapter is dedicated to the examination of the nanoparticle formation, growth and transport inside the source. Copper and silver nanoparticles were detected in situ in the gas phase...
|
3 |
Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil / Characterization of magnetic nanostructures by magnetic force microscopyStaňo, Michal January 2014 (has links)
The thesis deals with magnetic force microscopy of soft magnetic nanostructures, mainly NiFe nanowires and thin-film elements such as discs. The thesis covers almost all aspects related to this technique - i.e. from preparation of magnetic probes and magnetic nanowires, through the measurement itself to micromagnetic simulations of the investigated samples. We observed the cores of magnetic vortices, tiny objects, both with commercial and our home-coated probes. Even domain walls in nanowires 50 nm in diameter were captured with this technique. We prepared functional probes with various magnetic coatings: hard magnetic Co, CoCr and soft NiFe. Hard probes give better signal, whereas the soft ones are more suitable for the measurement of soft magnetic structures as they do not influence significantly the imaged sample. Our probes are at least comparable with the standard commercial probes. The simulations are in most cases in a good agreement with the measurement and the theory. Further, we present our preliminary results of the probe-sample interaction modelling, which can be exploited for the simulation of magnetic force microscopy image even in the case of probe induced perturbations of the sample.
|
4 |
Železem funkcionalizované nanočástice oxidu titaničitého / Iron Functionalized Nanoparticles of Titanium DioxideVolfová, Lenka January 2017 (has links)
Diploma thesis Iron Functionalized Nanoparticles of Titanium Dioxide Lenka Volfová 2017, ABSTRACT Iron-functionalized TiO2 were obtained by hydrolysis of aqueous solutions of titanyl sulfate with addition of ferric nitrate with ammonium hydroxide and the reaction filtered and washed with hydrogen peroxide. The colloid solutions thus prepared were lyophilized and the products were subsequently annealed at three different temperatures of 650 řC, 800 řC and 950 řC. The prepared doped materials were characterized by powder X-ray diffractometry, electron microscopy, infrared spectroscopy, Mössbauer spectroscopy, UV/VIS spectroscopy, thermogravimetric analysis and differential thermal analysis, and measurement of the specific surface area. Photocatalytic activity was determined by measuring of the decomposition of kinetics of 4-chlorophenol in an aqueous solution in the ultraviolet and visible area. For comparison of activity in the UV area and in the visible area were used a previously prepared highly photoactive specimen and standard TiO2 from Kronos, respectively. Keywords: Doped titanium dioxide, nanostructure, X-ray diffraction, electron microscopy, Mössbauer spectroscopy, suppression of photoactivity
|
5 |
Multikomponentní plazmové polymery s prostorově řízenými vlastnostmi / Multicomponent plasma polymers with spatially controlled propertiesPleskunov, Pavel January 2020 (has links)
Title: Multicomponent plasma polymers with spatially controlled properties Author: MSc. Pavel Pleskunov Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Prof. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics / Charles University Abstract: Mixing of two (or more) polymers often leads to phase separation and to the formation of nanoscale architecture, which can be highly attractive in various applications including controllable drug delivery, fabrication of separation and solid electrolyte membranes, gas storage, etc. Different wet-chemistry techniques already exist to produce nanophase-separated polymers; however, capturing the resultant polymeric structure in a predictable manner remains a challenging task. In this thesis, a low-temperature plasma-based strategy is investigated for the production of multicomponent thin films of plasma polymers with spatially discriminated nanoscale domains. Gas aggregation cluster source is used for the fabrication of nanoparticles of plasma polymerized acrylic acid, whereas Plasma-Assisted Vapor Phase Deposition is used for the deposition of thin films of poly(ethylene oxide) plasma polymer. Embedding of nanoparticles into matrices of thermodynamically incompatible plasma polymer as well as...
|
6 |
Elektrochemická impedanční spektroskopie jako charakterizační metoda modifikovaných nanostrukturovaných elektrod / Electrochemical impedance spectroscopy as a nanostructured bioelectrodes characterization methodVrbová, Eva January 2015 (has links)
Diploma thesis deals of nanostructured surfaces, nanoparticles and electrochemical characterization methods such as cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The aim of this thesis is a theoretical research issues of production and characterization nanostructured modified electrodes. The practical part is the production of biomodified nanostructured electrodes by anodi- zation W/Al layers with galvanic deposition of gold or deposition of mercury, a modifi- cation of the electrodes by 11-mercaptoundecanoic acid and by bovine serum albumin (BSA). The thesis includes SEM images of nanostructured electrodes contact angle mea- surements of these electrodes and form an electrical circuit with subsequent simulation waveforms.
|
Page generated in 0.2243 seconds