• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prilog razvoju metode za detekciju napada ometanjem usluge na Internetu / A contribution to the method for detection of denial of service attacks inInternet

Petković Miodrag 24 September 2018 (has links)
<p>U ovoj doktorskoj disertaciji predložen je i analiziran metod koji kombinuje primenu entropije odabranih obeležja mrežnog saobraćaja i Takagi-Sugeno-Kang (TSK) neuro-fazi modela u detekciji DoS napada. Entropija je primenjena jer omogućava detekciju širokog spektra statističkih anomalija uzrokovanih DoS napadima dok TSK neuro-fazi model daje dodatni kvalitet u konačnom određivanju tačaka početka i kraja napada povećavajući odnos ispravno i pogrešno detektovanih napada.</p> / <p>In this thesis a new method for DoS attack detection is proposed. This method<br />combines the use of entropy of some characteristic parameters of network traffic<br />and Takagi-Sugeno-Kang (TSK) neuro-fuzzy model. Entropy has been used because<br />it enables detection of wide spectar of network anomalies caused by DoS attacks,<br />while TSK adds new value to final detection of the start and the end of an attack<br />increasing ratio between true and false detections.</p>
2

Primena mašinskog učenja u problemu nedostajućih podataka pri razvoju prediktivnih modela / Application of machine learning to the problem of missing data in the development of predictive models

Vrbaški Dunja 20 July 2020 (has links)
<p>Problem nedostajućih podataka je često prisutan prilikom razvoja<br />prediktivnih modela. Umesto uklanjanja podataka koji sadrže<br />vrednosti koje nedostaju mogu se primeniti metode za njihovu<br />imputaciju. Disertacija predlaže metodologiju za pristup analizi<br />uspešnosti imputacija prilikom razvoja prediktivnih modela. Na<br />osnovu iznete metodologije prikazuju se rezultati primene algoritama<br />mašinskog učenja, kao metoda imputacije, prilikom razvoja određenih,<br />konkretnih prediktivnih modela.</p> / <p>The problem of missing data is often present when developing predictive<br />models. Instead of removing data containing missing values, methods for<br />imputation can be applied. The dissertation proposes a methodology for<br />analysis of imputation performance in the development of predictive models.<br />Based on the proposed methodology, results of the application of machine<br />learning algorithms, as an imputation method in the development of specific<br />models, are presented.</p>
3

Dekompozicija neuralne aktivnosti: model za empirijsku karakterizaciju inter-spajk intervala / Decomposition of neural activity: model for empirical characterization of inter-spike intervals

Mijatović Gorana 09 October 2018 (has links)
<p>Disertacija se se bavi analizom mogućnosti brze, efikasne<br />i pouzdane klasterizacije masivnog skupa neuralnih<br />snimaka na osnovu probabilističkih parametara procenjenih<br />iz obrazaca generisanja akcionih potencijala, tzv.<br />&quot;spajkova&quot;, na izlazu pojedinih neurona. Neuralna<br />aktivnost se grubo može podeliti na periode intezivne,<br />umerene i niske aktivnosti. Shodno tome, predložena je<br />gruba dekompozicija neuralne aktivnosti na tri moda koja<br />odgovaraju navedenim obrascima neuralne aktivnosti, na<br />osnovu dobro poznatog Gilbert-Eliot modela. Modovi su<br />dodatno ra&scaron;članjeni na sopstvena stanja na osnovu osobina sukcesivnih spajkova, omogućujući finiji, kompozitni<br />opis neuralne aktivnosti. Za svaki neuron empirijski se<br />procenjuju probabilistički parametri grube dekompozicije<br />- na osnovu Gilbert-Eliotovog modela i finije dekompozicije<br />- na osnovu sopstvenih stanja modova, obezbeđujući<br />željeni skup deskriptora. Dobijeni deskriptori<br />koriste se kao obeležja nekoliko algoritama klasterizacije<br />nad simuliranim i eksperimentalnim podacima. Za generisanje<br />simuliranih podataka primenjen je jednostavan<br />model za generisanje akcionih potencijala različitih<br />oscilatornih pona&scaron;anja pobuđujućih i blokirajućih kortikalnih<br />neurona. Validacija primene probabilističkih parametara<br />za klasterizaciju rada neurona izvr&scaron;ena je na<br />osnovu estimacije parametera nad generisanim neuralnim<br />odzivima. Eksperimentalni podaci su dobijeni<br />snimanjem kortikografskih signala iz dorzalnog anteriornog<br />cingularanog korteksa i lateralnog prefrontalnog<br />korteksa korteksa budnih rezus majmuna. U okviru predloženog<br />protokola evaluacije različitih pristupa<br />klasterizacije testirano je nekoliko metoda. Klasterizacija<br />zasnovana na akumulaciji dokaza iz ansambla particija<br />dobijenih k-means klasterovanjem dala je najstabilnije<br />grupisanje neuralnih jedinica uz brzu i efikasnu implementaciju.<br />Predložena empirijska karakterizacija može da<br />posluži za identifikaciju korelacije sa spolja&scaron;njim stimulusima,<br />akcijama i pona&scaron;anjem životinja u okviru<br />eksperimentalne procedure. Prednosti ovog postupka za<br />opis neuralne aktivnosti su brza estimacija i mali skup<br />deskriptora. Računarska efikasnost omogućuje primenu<br />nad obimnim, paralelno snimanim neuralnim podacima u<br />toku snimanja ili u periodima od interesa za identifikaciju<br />aktiviranih i povezanih zona pri određenim aktivnostima.</p> / <p>The advances in extracellular neural recording techniques<br />result in big data volumes that necessitate fast,<br />reliable, and automatic identification of statistically<br />similar units. This study proposes a single framework<br />yielding a compact set of probabilistic descriptors that<br />characterise the firing patterns of a single unit. Probabilistic<br />features are estimated from an inter-spikeinterval<br />time series, without assumptions about the firing distribution or the stationarity. The first level of proposed<br />firing patterns decomposition divides the inter-spike<br />intervals into bursting, moderate and idle firing modes,<br />yielding a coarse feature set. The second level identifies<br />the successive bursting spikes, or the spiking acceleration/<br />deceleration in the moderate firing mode, yielding<br />a refined feature set. The features are estimated from<br />simulated data and from experimental recordings from<br />the lateral prefrontal cortex in awake, behaving rhesus<br />monkeys. An effcient and stable partitioning of neural<br />units is provided by the ensemble evidence accumulation<br />clustering. The possibility of selecting the number of<br />clusters and choosing among coarse and refined feature<br />sets provides an opportunity to explore and compare<br />different data partitions. The estimation of features, if<br />applied to a single unit, can serve as a tool for the firing<br />analysis, observing either overall spiking activity or the<br />periods of interest in trial-to-trial recordings. If applied to<br />massively parallel recordings, it additionally serves as an<br />input to the clustering procedure, with the potential to<br />compare the functional properties of various brain<br />structures and to link the types of neural cells to the<br />particular behavioural states.</p>

Page generated in 0.0402 seconds