• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximalizace výpočetní síly neuroevolucí / Maximizing Computational Power by Neuroevolution

Matzner, Filip January 2016 (has links)
Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called edge of chaos. This work confirms this statement in a comprehensive set of experiments. Afterwards, the best performing echo state network is compared to a network evolved via neuroevolution. The evolved network outperforms the best echo state network, however, the evolution consumes significant computational resources. By combining the best of both worlds, the simplicity of echo state networks and the performance of evolved networks, a new model called locally connected echo state networks is proposed. The results of this thesis may have an impact on future designs of echo state networks and efficiency of their implementation. Furthermore, the findings may improve the understanding of biological brain tissue. 1
2

Evoluční návrh konvolučních neuronových sítí / Evolutionary Design of Convolutional Neural Networks

Piňos, Michal January 2020 (has links)
The aim of this work is to design and implement a program for automated design of convolutional neural networks (CNN) with the use of evolutionary computing techniques. From a practical point of view, this approach reduces the requirements for the human factor in the design of CNN architectures, and thus eliminates the tedious and laborious process of manual design. This work utilizes a special form of genetic programming, called Cartesian genetic programming, which uses a graph representation for candidate solution encoding.This technique enables the user to parameterize the CNN search process and focus on architectures, that are interesting from the view of used computational units, accuracy or number of parameters. The proposed approach was tested on the standardized CIFAR-10dataset, which is often used by researchers to compare the performance of their CNNs. The performed experiments showed, that this approach has both research and practical potential and the implemented program opens up new possibilities in automated CNN design.
3

Umělá inteligence v real-time strategiích / Artificial Intelligence for Real-time Strategy Games

Kurňavová, Simona January 2021 (has links)
Real-time strategy games are an exciting area of research, as creating a game AI poses many challenges - from managing a single unit to completing an objective of the game. This thesis explores possible solutions to this task, using genetic programming and neuroevolution. It presents and compares findings and differences between the models. Both methods performed reasonably well, but genetic programming was found to be a bit more effective in performance and results.
4

Neuronové sítě a genetické algoritmy / Neural Networks and Genetic Algorithm

Karásek, Štěpán January 2016 (has links)
This thesis deals with evolutionary and genetic algorithms and the possible ways of combining them. The theoretical part of the thesis describes genetic algorithms and neural networks. In addition, the possible combinations and existing algorithms are presented. The practical part of this thesis describes the implementation of the algorithm NEAT and the experiments performed. A combination with differential evolution is proposed and tested. Lastly, NEAT is compared to the algorithms backpropagation (for feed-forward neural networks) and backpropagation through time (for recurrent neural networks), which are used for learning neural networks. Comparison is aimed at learning speed, network response quality and their dependence on network size.
5

Principy a aplikace neuroevoluce / Neuroevolution Principles and Applications

Herec, Jan January 2018 (has links)
The theoretical part of this work deals with evolutionary algorithms (EA), neural networks (NN) and their synthesis in the form of neuroevolution. From a practical point of view, the aim of the work is to show the application of neuroevolution on two different tasks. The first task is the evolutionary design of the convolutional neural network (CNN) architecture that would be able to classify handwritten digits (from the MNIST dataset) with a high accurancy. The second task is the evolutionary optimization of neurocontroller for a simulated Falcon 9 rocket landing. Both tasks are computationally demanding and therefore have been solved on a supercomputer. As a part of the first task, it was possible to design such architectures which, when properly trained, achieve an accuracy of 99.49%. It turned out that it is possible to automate the design of high-quality architectures with the use of neuroevolution. Within the second task, the neuro-controller weights have been optimized so that, for defined initial conditions, the model of the Falcon booster can successfully land. Neuroevolution succeeded in both tasks.

Page generated in 0.0578 seconds