51 |
Increased Resurgent Sodium Currents (INaR) in Inherited and Acquired Disorders of ExcitabilityPiekarz, Andrew D. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Voltage-gated sodium channels (VGSCs) are dynamic membrane spanning proteins which mediate the rapid influx of Na+ during the upstroke of the action potential (AP). In addition to the large inward Na+ currents responsible for the upstroke of the AP, some VGSC isoforms produce smaller, subthreshold Na+ currents, which can influence the excitable properties of neurons. An example of such a subthreshold current is resurgent Na+ current (INaR). These unusual currents are active during repolarization of the membrane potential, where the channel is normally refractory to activity. INaR exhibit slow gating kinetics and unusual voltage-dependence derived from a novel mechanism of channel inactivation which allows the channel to recover through an open configuration resulting in membrane depolarization early in the falling phase of the AP, ultra-fast re-priming of channels, and multiple AP spikes. Although originally identified in fast spiking central nervous system (CNS) neurons, INaR has recently been observed in a subpopulation of peripheral dorsal root ganglion (DRG) neurons. Because INaR is believed to contribute to spontaneous and high frequency firing of APs, I have hypothesized that increased INaR may contribute to ectopic AP firing associated with inherited and acquired disorders of excitability. Specifically, this dissertation explores the mechanisms which underlie the electrogenesis of INaR in DRG neurons and determines whether the biophysical properties of these unique currents were altered by mutations that cause inherited muscle and neuronal channelopathies or in an experimental model of nerve injury. The results demonstrate that (1) multiple Na+ channel isoforms are capable of producing INaR in DRG neurons, including NaV1.3, NaV1.6, and NaV1.7, (2) inherited muscle and neuronal channelopathIy mutations that slow the rate of channel inactivation increase INaR amplitude, (3) temperature sensitive INaR produced by select skeletal muscle channelopthy mutations may contribute to the triggering of cold-induced myotonia, and (4) INaR amplitude and distribution is significantly increased two weeks post contusive spinal cord injury (SCI). Taken together, results from this dissertation provide foundational knowledge of the properties and mechanism of INaR in DRG neurons and indicates that increased INaR likely contributes to the enhanced membrane excitability associated with multiple inherited and acquired disorders of excitability.
|
52 |
Genetic Risk Factors for PTSD: A Gene-Set Analysis of Neurotransmitter ReceptorsLewis, Michael 08 July 2020 (has links)
PTSD is a moderately heritable disorder that causes intense and chronic suffering in many afflicted individuals. The pathogenesis of PTSD is not well understood, and genetic mechanisms are particularly elusive. Neurotransmitter systems are thought to contribute to PTSD etiology and are the targets of most pharmacotherapies used to treat PTSD, including the only two FDA approved options and a wide array of off-label options. However, the degree to which variation in genes which encode for and regulate neurotransmitter receptors increase risk of developing PTSD is unclear. Recently, large collaborative groups of PTSD genetics researchers have completed genome-wide association studies (GWAS) using massive sample sizes and have made summary statistics available for public use. In 2018, a new technique for high-powered analysis of GWAS summary statistics called GSA-SNP2 was introduced. In order to explore the relationship between PTSD and genetic variants in widely theorized molecular targets, this study applied GSA-SNP2 to manually curated neurotransmitter receptor gene-sets. Curated gene-sets included nine total "neurotransmitter receptor group" gene-sets and 45 total "receptor subtype" gene-sets. Each "neurotransmitter receptor group" gene-sets was designed to capture concentration of genetic risk factors for PTSD within genes which encode for all receptor subtypes that are activated by a given neurotransmitter. In contrast, "receptor subtype" gene-sets focused on specific subtypes and also accounted for intracellular signaling; each was designed to capture concentration of genetic risk factors for PTSD within genes which encode for specific receptor subtypes and the intracellular signaling proteins through which they exert their effects. Due to practical considerations, this work used summary statistics derived from a GWAS with far fewer participants (2,424 cases; 7,113 controls) than initially planned (23,212 cases; 151,447 controls). Prior to controlling for multiple comparisons, 7 of the investigated gene-sets reached statistical significance at the p ≤ .05 level. However, after controlling for multiple comparisons, none of the investigated gene-sets reached statistical significance. Due to limited statistical power of the current work, these results should be interpreted very cautiously. The current study is best interpreted as a preliminary study and is most informative in relation to refining study design. Implications for next steps are emphasized in discussion and nominally significant results are synthesized with the literature to demonstrate the types of research questions that might be addressed by applying a refined version of this study design to a larger sample. / Doctor of Philosophy / Though nearly all individuals will be exposed to a potentially traumatic event in their lifetime, only a small percentage will experience PTSD, which is a severe psychological disorder. Though genetics are known contribute to an individual's level of risk for developing PTSD, relatively little is known about which particular genetic differences are key. Neurotransmitter receptors are thought to contribute to the risk for PTSD and are a key aspect of medications for PTSD. However, little is known about whether genetic differences in neurotransmitter receptors contribute to risk for developing PTSD. Recently, large collaborative groups of PTSD genetics researchers have completed studies which investigate genetic risk factors from across the genome using massive sample sizes and have made the statistical output of these studies available to the public. In 2018, a new technique called GSA-SNP2 was created to help assist with efforts to analyze aspects of that statistical output that have not been previously analyzed. This study used GSA-SNP2 to analyze the degree to which groups of neurotransmitter receptor genes contribute to the risk of developing PTSD. Due to the coronavirus pandemic, the researcher did not have access to the computing power needed to analyze the initially planned data which included 23,212 individuals with PTSD and 151,447 individuals without PTSD. As a substitute, the current work is an analysis using statistical output data from a study which included 2,424 individuals with PTSD and 7,113 individuals without PTSD. Based on a level of statistical significance that is typically used in most psychological studies, seven of the investigated gene-sets contribute highly to the risk for PTSD. However, it was necessary to use a different threshold for statistical significance due to the testing of many different groups of genes. After making that adjustment, none of the investigated gene-sets reached statistical significance. Due to limited statistical power of the current work, these results should be interpreted very cautiously. The current study is best interpreted as a preliminary study and is most informative in relation to refining study design. Implications for next steps are emphasized in discussion and nominally significant results are synthesized with the literature to demonstrate the types of research questions that might be addressed by applying a refined version of this study design to a larger sample.
|
53 |
Postsynaptic mechanisms of plasticity at developing mossy fiber-CA3 pyramidal cell synapses. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
Ho, Tsz Wan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 125-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
54 |
Biomechanics and electrophysiology of sensory regulation during locomotion in a novel in vitro spinal cord-hindlimb preparationHayes, Heather Brant 18 October 2010 (has links)
The purpose of this dissertation was to gain insight into spinal sensory regulation during locomotion. To this end, I developed a novel in vitro spinal cord-hindlimb preparation (SCHP) composed of the isolated in vitro neonatal rat spinal cord oriented dorsal-up with intact hindlimbs locomoting on a custom-built treadmill or instrumented force platforms. The SCHP combines the neural and pharmacological accessibility of classic in vitro spinal cord preparations with intact sensory feedback from physiological hindlimb movements. thereby expanding our ability to study spinal sensory function. I then validated the efficacy of the SCHP for studying behaviorally-relevant, sensory-modulated locomotion by showing the impact of sensory feedback on in vitro locomotion. When locomotion was activated by serotonin and N-methyl D-aspartate, the SCHP produced kinematics and muscle activation patterns similar to the intact rat. The mechanosensory environment could significantly alter SCHP kinematics and muscle activitation patterns, showing that sensory feedback regulates in vitro spinal function. I further demonstrated that sensory feedback could reinforce or initiate SCHP locomotion.
Using the SCHP custom-designed force platform system, I then investigated how presynaptic inhibition dynamically regulates sensory feedback during locomotion and how hindlimb mechanics influence this regulation. I hypothesized that contralateral limb mechanics would modulate presynaptic inhibition on the ipsilateral limb. My results indicate that contralateral limb stance-phase loading regulates ipsilateral swing-phase sensory inflow. As contralateral stance-phase force increases, contralateral afferents act via a GABAergic pathway to increase ipsilateral presynaptic inhibition, thereby inhibiting sensory feedback entering the spinal cord. Such force-sensitive contralateral presynaptic inhibition may help preserve swing, coordinate the limbs during locomotion, and adjust the sensorimotor strategy for task-specific demands.
This work has important implications for sensorimotor rehabilitation. After spinal cord injury, sensory feedback is one of the few remaining inputs available for accessing spinal locomotor circuitry. Therefore, understanding how sensory feedback regulates and reinforces spinally-generated locomotion is vital for designing effective rehabilitation strategies. Further, sensory regulation is degraded by many neural insults, including spinal cord injury, Parkinson's disease, and stroke, resulting in spasticity and impaired locomotor function. This work suggests that contralateral limb loading may be an important variable for restoring appropriate sensory regulation during locomotion.
|
55 |
Synaptic Targeting of Neurotransmitter Receptors is Regulated by Neurobeachin / Neurobeachin Reguliert Synaptischer Transport von Neurotransmitter RezeptorenNair, Ramya 02 May 2011 (has links)
No description available.
|
56 |
Over-Expression of BDNF Does Not Rescue Sensory Deprivation-Induced Death of Adult-Born Olfactory Granule CellsUnknown Date (has links)
It is of interest to understand how new neurons incorporate themselves into the
existing circuitry of certain neuronal populations. One such population of neurons is that
which are born in the subventricular zone (SVZ) and migrate to the olfactory bulb where
they differentiate into granule cells. Another area of interest is the role of brain-derived
neurotrophic factor (BDNF) on the survival and overall health of these neurons. This
study aimed to test whether or not BDNF is a survival factor for adult-born granule cells.
Here were utilized a transgenic mouse model over-expressing BDNF under the α-
calcium/calmodulin-dependent protein kinase II (CAMKIIα) promoter, and tested its
effect on olfactory granule cells under sensory deprived conditions. Results from this
experiment indicated that there was no significant difference in cell death or cell survival when comparing transgenic and wild type animals. We concluded that BDNF is not a
survival factor for adult-born granule cells. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
57 |
Of Mice, Men and Memories: The Role of the Rodent Hippocampus in Object RecognitionUnknown Date (has links)
Establishing appropriate animal models for the study of human memory is
paramount to the development of memory disorder treatments. Damage to the
hippocampus, a medial temporal lobe brain structure, has been implicated in the memory
loss associated with Alzheimer’s disease and other dementias. In humans, the role of the
hippocampus is largely defined; yet, its role in rodents is much less clear due to
conflicting findings. To investigate these discrepancies, an extensive review of the rodent
literature was conducted, with a focus on studies that used the Novel Object Recognition
(NOR) paradigm for testing. The total amount of time the objects were explored during
training and the delay imposed between training and testing seemed to determine
hippocampal recruitment in rodents. Male C57BL/6J mice were implanted with bilateral
dorsal CA1 guide cannulae to allow for the inactivation of the hippocampus at discrete
time points in the task. The results suggest that the rodent hippocampus is crucial to the
encoding, consolidation and retrieval of object memory. Next, it was determined that there is a delay-dependent involvement of the hippocampus in object memory, implying
that other structures may be supporting the memory prior to the recruitment of
hippocampus. In addition, when the context memory and object memory could be further
dissociated, by altering the task design, the results imply a necessary role for the
hippocampus in the object memory, irrespective of context. Also, making the task more
perceptually demanding, by requiring the mice to perform a two-dimensional to three-dimensional
association between stimuli, engaged the hippocampus. Then, in the
traditional NOR task, long and short training exploration times were imposed to
determine brain region activity for weak and strong object memory. The inactivation and
immunohistochemistry findings imply weak object memory is perirhinal cortex
dependent, while strong object memory is hippocampal-dependent. Taken together, the
findings suggest that mice, like humans, process object memory on a continuum from
weak to strong, recruiting the hippocampus conditionally for strong familiarity.
Confirming this functional similarity between the rodent and human object memory
systems could be beneficial for future studies investigating memory disorders. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
58 |
Purificação de células troco de lipoaspirado humano por aptâmeros de DNA, seguida da caracterização dos fenótipos obtidos da diferenciação neuronal / Human adipose mesechymal stem cell separation by DNA aptamers followed by the characterization of the obtained phenotypes from neuronal differentiationNery, Arthur Andrade 14 May 2014 (has links)
Células tronco mesenquimais de tecido adiposo, são uma promissora ferramenta para aplicações clínicas em terapias celular e regenerativa, em vista da facilidade de sua extração e da maior quantidade de células por unidade de massa de tecido quando comparado a outras fontes clássicas de células mesenquimais como medula óssea. O protocolo clássico de extração e purificação dessas células, depende de sua adesão em plástico e xeno-materiais demandando muito tempo para ser utilizado por médicos para auxiliar pacientes em procedimentos de emergência. Estas células são capazes se diferenciar em diversos tipos celulares, o que as torna boas candidatas para terapia celular, embora sua capacidade de transdiferenciação para fenótipos neuronais seja ainda discutida. Neste trabalho demonstramos um novo processo para isolar essas células na base de epitopos específicos expressos (assinatura molecular de superfície) utilizando aptâmeros como ligantes de alta afinidade para estes sitios. Aptâmeros, moléculas de DNA simples fita identificadas a partir de uma biblioteca combinatória de sequencias de DNA simples-fita foram identificados por ciclos reiterativos de seleção in vitro (SELEX) utilizando células tronco do lipoaspirado como alvo. Dois aptâmeros isolados, denominados APT9 e APT11, foram capazes de identificar subpopulações (15,8 e 23,7% respectivamente) dentre as células tronco mesenquimais (classicamente CD29+/CD90+/CD45-) e separá-las usando nano-partículas magnéticas acopladas aos aptâmeros. Além disso, seguindo uma indução para diferenciação neuronal, as células tronco mesenquimais passam a apresentar morfologia neuronal e apresentam expressão e atividade de diversos receptores de neurotransmissores, avaliados por PCR real-time e imageamento de variações da concentração de cálcio intracelular ápos stimulação com vários agonistas de receptores metatrópicos e ionotrópicos. Ao longo da diferenciação, os níveis transcricionais de mRNA de receptores de cininas (B1 e B2), nicotínicos (alfa 7), muscarínicos (M1, M3 e M4), glutamatérgicos (AMPA2 e mGluR2), purinérgicos (P2Y1 e P2Y4) e GABAergicos (GABA-A, subunidade 3) e da óxido nítrico sintase neural aumentaram quando comparados aos níveis das células não diferenciadas, enquanto que os níveis de expressão de outros receptores incluindo purinérgicos P2X1, P3X4, P2X7 e P2Y6 e muscarínico M5 diminuíram. Os níveis de atividade das classes dos receptores estudados, por imageamento de variações da concentração de cálcio intrac, aumentaram para a maioria dos agonistas analisados durante a diferenciação neuronal com exceção para respostas induzidas por glutamato e NMDA. Células diferenciadas expressavam altos níveis de antígenos específicos de neurônios como β3-tubulina, NF-H, NeuN e MAP-2 indicando uma diferenciação em fenótipo neuronal bem sucedida. Desta maneira, esta tese, ao identificar aptâmeros, prove uma inovadora solução para médicos usarem as células tronco mesenquimais dentro de uma sala de cirurgia, através de um método que é capaz de purificar essas células em um tempo clínico viável, com pureza e sem contato com contaminantes. Além disso, nós mostramos aqui que com um protocolo como o proposto para diferenciação neuronal, nós poderíamos induzir essas células para se diferenciar em neurônios, através da ativação de fatores de transcrição específicos, levando às células tronco mesenquimais a serem possivelmente utilizadas em terapias celulares de reparo neuronal. / Adipose mesenchymal stem cells are promising tools for clinical applications in cellular and regeneration therapies, in view of easiness of extraction and higher amount of isolated stem cells per mass of tissue when compared to other classical mesenchymal stem cell sources including bone marrow. The classical protocol to extract and purify these cells, depending on plastic adherence and xeno-materials, is too time consuming to be used by physicians to help patients at emergency procedures. These cells are able to differentiate into various cell types, making them good candidates for cell therapy, however their capability for transdifferentiation into neural phenotypes is yet discussed. Here we show a novel process to isolate these cells using their surface molecular signature and aptamers, ssDNA molecules identified through the SELEX technique, denominated APT9 and APT11 that are able to identify subpopulations (15,8 and 23,7% respectively) within the mesenchymal stem cells (classically CD29+/CD90+/CD45-) and separate them using magnetic nano-particles attached to the aptamers. Moreover, following induction to neural differentiation, mesenchymal cells presents neuronal morphology and present expression and activity of several neurotransmitter receptors, as evaluated by real-time PCR and calcium imaging. During this process, mRNA transcription levels of bradykinin (B1 and B2), cholinergic (alpha 7), muscarinic (M1, M3 and M4), glutamatergic (AMPA2 and mGlu2), purinergic (P2Y1 and P2Y4) and GABAergic (GABA-A, subunit 3) receptors and neuronal nitric oxide synthase were augmented when compared to levels of undifferentiated cells, while the expression levels of other receptors including purinergic P2X1, P2X4, P2X7 and P2Y6 and muscarinic M5 receptors were down-regulated. Activity levels of the studied receptor classes, as studied by calcium imaging, increased for most of the agonists analyzed during the neuronal differentiation with the exception for glutamate- and NMDA-induced receptor responses. Differentiated cells expressed high levels of neuron-specific antigens such as β3-tubulin, NF-H, NeuN and MAP-2, indicating a successful differentiation into neuronal phenotypes. This thesis, by identifying aptamers, provides a novel solution for physicians to use mesenchymal stem cells inside a surgery room, by using a method that are able to purify the cells in a clinical viable time, with purity and no contact with contaminats. Furthermore, we show here that with a protocol as provided for neuronal differentiation, we could induce these cells to differentiate into neurons, by activating specific transcription factors,making mesenchymal stem cells to possibly be used in neuronal repair cell therapies.
|
59 |
Roles of serotonin 2A receptor in a serotonin syndromeUnknown Date (has links)
Serotonin (5-HT) is a neurotransmitter in the central nervous system. Decrease in the brain 5-HT level could induce depression, showing a state of low mood, aversion to motion and feeling of worthlessness. About 12 million adults in the United States have depression. Antidepressants, such as monoamine oxidase inhibitors and selective serotonin reuptake inhibitors, can alleviate the depressive mood by increasing the brain's 5-HT activity, however they can also induce a potentially life-threatening side effect, namely 5-HT syndrome. This syndrome is manifested by neuromuscular hyperactivities, mental disorders and autonomic dysfunctions. Clinical studies have demonstrated that 5-HT2A receptor antagonists could effectively block severe symptoms of patients with the 5-HT syndrome. To understand the underlying mechanisms, in this study we examined the activity of the 5-HT2A receptor in rats with the 5-HT syndrome evoked by a combined injection of clorgyline, a monoamine oxidase inhibitor , and paroxetine, a selective 5-HT reuptake inhibitor. The major findings from my study were that: (1) Chronic clorgyline treatment significantly exacerbated 5-HT2A receptor-mediated symptoms of the 5-HT syndrome animals; (2) The 5-HT2A receptor-mediated symptoms were also aggravated when the 5-HT syndrome animals were housed in warm (32 ÀC) ambient temperature; (3) Blocking 5-HT2A receptors in the medial prefrontal cortex alleviated the 5-HT syndrome through a circuit between raphe serotonergic neurons and medial prefrontal cortex glutamatergic neurons. Taken together, my data demonstrate that the activity of 5-HT2A receptors may be enhanced by chronic antidepressant treatment and warm environmental temperature. / The sensitized 5-HT2A receptor in the medial prefrontal cortex may exacerbate the syndrome through a positive-feedback circuit between medial prefrontal cortex and raphe nuclei, which would result in excessive 5-HT in the brain. This study casts a new light on the underlying mechanisms of the 5-HT syndrome. / by Gongliang Zhang. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
60 |
Titania and silica based hybrid porous nanomaterials : from synthesis to applications / Nanomateriaux hybrides poreux à base de silice et de dioxyde de titane : de la synthèse aux applicationsChen, Pengkun 10 February 2017 (has links)
Mon doctorat se focalise sur la synthèse, la caractérisation et les applications de matériaux poreux à base de silice, dioxyde de titane et zéolite. La silice poreuse, le dioxyde de titane et les zéolites ont été synthétisés en utilisant des méthodologies différentes. Des matériaux de silice fonctionnalisés ont été utilisés pour des applications en adsorption de colorant, ce qui est utile pour le traitement de l'eau. Un nouveau système réticulé et un nouveau dispositif ont été créés pour améliorer la capacité d'adsorption et pour le traitement d’une grande quantité d'eau. En tirant parti des pores, une nouvelle méthode de formation de clusters de Cu (0) a été établie. Les propriétés photophysiques ont été étudiées, en utilisant plusieurs sources de cuivre et différents matériaux poreux. L'utilisation du confinement pour la détection de petites molécules biologiques tels que les neurotransmetteurs a été démontrée. Plusieurs applications ont été développées sur la base de ces récepteurs de neurotransmetteurs artificiels. Un matériau de titane mésoporeux multifonctionnalisé a été utilisé pour les applications en biologie. En comparaison avec la silice, plus couramment utilisée, sa photoactivité pourrait apporter des avantages supplémentaires. Finalement, de nouveaux types de matériaux de type organotitanes hybrides ont été développés, et leurs propriétés photo-catalytiques ont été démontrées. / My PhD research focus on the synthesis, characterization and applications of silica, titania and zeolite based porous materials. Porous silica, titania and zeolite have been synthesized using different methodologies. Functionalized silica materials have been used for dye adsorption application which is useful for water treatment. A new cross-linked system and device have been created to enhance the adsorption ability and for large quantity of water treatment. By taking advantage of the pores, new method for Cu(0) cluster formation have been established. The photophysics of the Cu(0) clusters reduced from different copper source in different porous materials has been investigated. The use of the confinement for sensing has been demonstrated for small bio molecules, such as neurotransmitters. Several applications have been developed based on this artificial neurotransmitter receptors. Multi-functionalized mesoporous titania material has been used for bio-applications. Compare to the widely used silica material, its photoactivity could bring extra advantages. Finally, new types of hybrid organotitanium materials have been developed and their photocatalytic properties have been investigated.
|
Page generated in 0.0975 seconds