1 |
Raréfaction dans les suites b-multiplicatives / The rarefaction phenomenon in b-multiplicative sequences.Aksenov, Alexandre 16 January 2014 (has links)
On étudie une sous-classe des suites b-multiplicatives rarefiées avec un pas de raréfaction p premier, et on trouve une structure asymptotique avec un exposant alphain]0,1[ et une fonction de raréfaction continue périodique. Cette structure vaut pour les suites qui contiennent des nombres complexes du disque unité (section 1.1), et aussi pour des systèmes de numération avec b chiffres successifs positifs et négatifs (section 1.2). Ce formalisme est analogue à celui décrit (pour le cas particuler de la suite de Thue-Morse) par Gelfond; Dekking; Goldstein, Kelly, Speer; Grabner; Drmota, Skalba et autres. Dans la deuxième partie, largement indépendante, on étudie la raréfaction dans les suites composées de -1,0 et +1. On se restreint davantage au cas où b engendre le groupe multiplicatif modulo p. Cette hypothèse est conjecturée (Artin) d'être vraie pour une infinité de nombres premiers. Les constantes qui apparaissent s'expriment alors comme polynômes symétriques des P(zeta^j) où P est un polynôme à coefficients entiers, zeta est une racine primitive p-ième de l'unité, $j$ parcourt les entiers de 1 à p-1 (ce lien est explicité dans la section 1.3). On définit une méthode pour étudier les valeurs de ces polynômes symétriques, basée sur la combinatoire, notamment sur le problème de comptage des solutions des congruences et des systèmes linéaires modulo p avec deux conditions supplémentaires: les résidus modulo p utilisés doivent être non nuls et différents deux à deux. L'importance est donnée à la différence entre les nombres de soluions de deux congruences qui ne diffèrent que du terme sans variable. Le cas des congruences de la forme $x_1+x_2+...+x_n=i mod p$ équivaut à un résultat connu. Le mémoire (section 2.2) lui donne une nouvelle preuve qui en fait une application originale de la formule d'inversion de Möbius dans le p.o.set des partitions d'un ensemble fini. Si au moins deux coefficients distincts sont présents, on peut classer les réponses associées à toutes les congruences possibles qui ont un ensemble fixe de coefficients (de taille d), dans un tableau qu'on va appeler un "simplexe de Pascal fini". Ce tableau est une fonction delta:N^d->Z restreinte aux points de somme des coordonnées inférieure à p (un simplexe), avec deux propriétés: l'équation récursive de Pascal y est vérifiée partout sauf les points où la somme des coefficients est multiple de p (qui seront appelés les "sources" et forment un sous-réseau de l'ensemble des points entiers), et les valeurs en-dehors du simplexe induites par l'équation sont nulles (c'est démontré, en réutilisant la méthode précédente, dans la section 2.3 et en partie 2.4). On décrit un algorithme (section 2.4) qui consiste en applications successives de l'équation dans un ordre précis, qui permet de trouver l'unique fonction delta qui vérifie les deux conditions. On applique ces résultats aux suites b-multiplicatives (dans la section 2.5). On montre aussi que le nombre de sources ne dépend que de la dimension du simplexe d et de la longueur de son côté p. On formule la conjecture (partie 2.6) qu'il serait le plus petit possible parmi les tableaux de forme d'un simplexe de la dimention fixe et taille fixe qui vérifient les mêmes conditions. On montre un premier résultat sur les systèmes de deux congruences linéaires (section 2.5.4), et on montre (section 1.4) un lien avec une méthode de Drmota et Skalba pour prouver l'absence de phénomène de Newman (dans un sens précis), décrit initialement pour la suite de Thue-Morse et tout p tel que b engendre le groupe multiplicatif modulo p, et généralisé (section 1.4) à la suite (-1)^{nombre de chiffres 2 dans l'écriture en base 3 de n} appelée "++-". Cette problématique est riche en problèmes d'algorithmique et de programmation. Différentes sections du mémoire sont illustrées dans l'Annexe. La plupart de ces figures sont inédites. / The primary object of study is a subclass of b-multiplicative sequences, p-rarefied which means that the subsequence of terms of index multiple of a prime number p is taken. The sums of their initial terms have an asymptotic structure described by an exponent alphain]0,1[ and a contnous periodic "rarefaction function". This structure is valid for sequences with complex values in the unit disc, in both cases of the usual numerating system (section 1.1) and one with b successive digits among which there are positive and negative (section 1.2). This formalism is analogous to the formalism for the Thue-Morse sequence in texts by Gelfond; Dekking; Goldstein, Kelly, Speer; Grabner; Drmota, Skalba and others. The second, largely independent, part concerns rarefaction in sequences with terms in -1,0 or 1. Most results concern the case where b is a generator of the multiplicative group modulo p. This condition has been conjectured to be valid for infinity of primes, by Artin. The constants which are important, can be written as symmetric polynomials of P(zeta^j) where zeta is a primitive p-th root of unity, P is a polynomial with integer coefficients and j runs through the numbers from 1 to p-1 (section 1.3). The text describes a combinatorics-based method to study the values of these symmetric polynomials, where the combinatorial problem is as follows. Count the solutions of a linear congruence or a system modulo p, which satisfy a condition: the values of variables must be different from each other and from zero. Importance is attached to the difference between the numbers of solutions of two congruences that differ only in the free term. For the congruences of the form $x_1+x_2+...+x_n=i mod p$ this problem reduces to a well-known result. The text (section 2.2) gives an original proof of it, using the Möbius inversion formula in the p.o.set of partitions of a finite set. If at least two distinct coefficients are present, we can fix a set of coefficients (of size d) and put the answers corresponding to all possible linear congruences into an array that will be called "finite Pascal's triangle". It is a function delta:N^d->Z restricted to inputs with the sum of coordinates smaler than p (a simplex), and it has two properties. A recursive equation similar to the equation of Pascal holds everywhere except the points where the sum of coefficients is a multiple of p (a sublattice of Z^d the points of which are called "sources"); the values induced by this equation beyond the simplex are zeroes (section 2.3 and part of 2.4). An algorithm that finds the unique function delta satisfying these condiditions is described (section 2.4). It consists in successive applications of the equation in a precise order. These results are then applied to the b-multiplicative sequences (section 2.5). We also prove that the number of sources depends only on the dimention d and the size p of the simplex. We conjecture (section 2.6) that this number is the smallest possible for all numerical arrays of the same dimention and size that satisfy the same conditions. A first result about the systems of two linear congruences is proved (section 2.5.4). It is shown how these systems are related to a method by Drmota and Skalba of proving the absence of Newman's phenomenon (in a precise sence) initially described for the Thue-Morse sequence and for a prime p such that 2 is a generator of the multiplicative group modulo p, then extended to the sequence (-1)^{number of digits 2 in the ternary extension of n} called "++-". These questions generate many algorithmic and programming problems. Several sections link to illustration situated in the Annexe. Most of these figures are published for the first time.
|
Page generated in 0.0453 seconds