• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 140
  • 74
  • 27
  • 26
  • 15
  • 10
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 654
  • 196
  • 104
  • 65
  • 64
  • 58
  • 52
  • 52
  • 48
  • 48
  • 47
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Judaism in the theology of Sir Isaac Newton /

Goldish, Matt. January 1900 (has links)
Texte remanié de: Diss.--Jerusalem--Hebrew University, 1996. / Bibliogr. p. 219-233. Index.
2

"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in families

Soares Júnior, Carlos Humberto 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0 ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0 ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0 ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0 ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
3

"Poliedros de Newton e trivialidade em famílias de aplicações" / Newton polyhedra, triviality in families

Carlos Humberto Soares Júnior 13 June 2003 (has links)
Neste trabalho utilizamos a tecnica de construcao de campos de vetores controlados para obter estimativas do valor da filtracao de uma aplicacao polinomial $Theta:R^n,0 ightarrowR^p,0$ para que a familia $f_t=f+tTheta$ seja $C^ell$-$mathcal{G}$-trivial, bi-lipschitz trivial ou topologicamente trivial, onde $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ ou $mathcal{K}$ e $f:R^n,0 ightarrow R^p,0$ e um germe de aplicacao polinomial satisfazendo uma condicao de nao-degeneracao com relacao a algum poliedro de Newton. Obtemos tambem resultados sobre a trivializacao $C^ell$-modificada para familias de aplicacoes semi-quase-homogeneas de classe $C^{ell + 1}$, e familias de funcoes Newton nao-degeneradas de classe $C^{ell + 1}$. / In this work we use controlled vector fields to obtain estimates for the filtration of a polynomial map-germ $Theta:R^n,0 ightarrowR^p,0$ such that the family $f_t=f+tTheta$ is $C^ell$-$mathcal{G}$-trivial, bi-Lipschitz trivial, or topologicaly trivial, where $ellgeq 1$, $mathcal{G}=mathcal{R}$, $mathcal{C}$ or $mathcal{K}$ and $f:R^n,0 ightarrowR^p,0$ is a polynomial map-germ satisfying a non-degeneracy condition. Results are also obtained on the modified $C^ell$-trivialization for families of semi-wheighted homogeneous maps of class $C^{ell+1}$ with an isolated sigularity at the origin, and families of Newton non-degenerate functions of class $C^{ell+1}$.
4

A study of the educational and business experiences of the 1952-1958 secretarial graduates of Mount Ida, Newton Center, Massachusetts

Phillips, Helen L. January 1960 (has links)
Thesis (Ed.M.)--Boston University
5

Inverse Toeplitz Eigenvalue Problem

Chen, Jian-Heng 15 July 2004 (has links)
In this thesis, we consider the inverse Toeplitz eigenvalue problem which recover a real symmetric Toeplitz with desired eigenvalues. First some lower dimensional cases are solved by algebraic methods. This gives more insight on the inverse problem. Next, we explore the geometric meaning of real symmetric Toeplitz matrices. For high dimensional cases, numerical are unavoidable. From our numerical experiments, Newton-like methods are very effective for this problem.
6

Implantation automatique de logiques en bandes

Paillotin, Jean-François. Saucier, Gabrièle. January 2008 (has links)
Reproduction de : Thèse de 3e cycle : informatique : Grenoble, INPG : 1984. / Titre provenant de l'écran-titre. Bibliogr. p. 195-207.
7

Der raum und zeitbegriff bei Newton ...

Osieka, Herbert, January 1934 (has links)
Inaug.-diss.--Broslau. / Lebenslauf. "Literaturverzeichnis": p. 89-90.
8

Newton's Method

Banacka, Nicole Lynn 12 December 2013 (has links)
Root-finding algorithms have been studied for ages for their various applications. Newton's Method is just one of these root-finding algorithms. This report discusses Newton's Method and aims to describe the procedures behind the method and to determine its capabilities in finding the zeros for various functions. The possible outcomes when using this method are also explained; whether the Newton function will converge to a root, diverge from the root, or enter a cycle. Modifications of the method and its applications are also described, showing the flexibility of the method for different situations. / text
9

Dynamik und Gravitationsstrahlung einspiralender Binärsysteme nicht-punktförmiger Objekte

Hansen, Dörte. Unknown Date (has links) (PDF)
Jena, Universiẗat, Diss., 2008.
10

Der raum und zeitbegriff bei Newton ...

Osieka, Herbert, January 1934 (has links)
Inaug.-diss.--Broslau. / Lebenslauf. "Literaturverzeichnis": p. 89-90.

Page generated in 0.0436 seconds