Spelling suggestions: "subject:"nfkappa b"" "subject:"ikappa b""
181 |
Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A DissertationWeng, Dan 07 July 2014 (has links)
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments.
Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
|
182 |
Lactate Suppresses Macrophage Pro-inflammatory Response to Lps Stimulation by Inhibition of YAP and Nf-κB Activation via GPR81-Mediated SignalingYang, Kun, Xu, Jingjing, Fan, Min, Tu, Fei, Wang, Xiaohui, Ha, Tuanzhu, Williams, David L, Li, Chuanfu 06 October 2020 (has links)
Recent evidence from cancer research indicates that lactate exerts a suppressive effect on innate immune responses in cancer. This study investigated the mechanisms by which lactate suppresses macrophage pro-inflammatory responses. Macrophages [Raw 264.7 and bone marrow derived macrophages (BMDMs)] were treated with LPS in the presence or absence of lactate. Pro-inflammatory cytokines, NF-κB and YAP activation and nuclear translocation were examined. Our results show that lactate significantly attenuates LPS stimulated macrophage TNF-α and IL-6 production. Lactate also suppresses LPS stimulated macrophage NF-κB and YAP activation and nuclear translocation in macrophages. Interestingly, YAP activation and nuclear translocation are required for LPS stimulated macrophage NF-κB activation and TNFα production. Importantly, lactate suppressed YAP activation and nuclear translocation is mediated by GPR81 dependent AMKP and LATS activation which phosphorylates YAP, resulting in YAP inactivation. Finally, we demonstrated that LPS stimulation induces an interaction between YAP and NF-κB subunit p65, while lactate decreases the interaction of YAP and NF-κB, thus suppressing LPS induced pro-inflammatory cytokine production. Our study demonstrates that lactate exerts a previously unknown role in the suppression of macrophage pro-inflammatory cytokine production via GPR81 mediated YAP inactivation, resulting in disruption of YAP and NF-κB interaction and nuclear translocation in macrophages.
|
183 |
Resveratrol modulates interleukin-1beta-induced phosphatidylinositol 3-kinase and nuclear factor kappaB signaling pathways in human tenocytesBusch, F., Mobasheri, A., Shayan, P., Lueders, C., Stahlmann, R., Shakibaei, M. January 2012 (has links)
No / Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1beta-mediated inflammatory signaling. Resveratrol suppressed IL-1beta-induced activation of NF-kappaB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1beta-induced NF-kappaB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IkappaB kinase, IkappaBalpha phosphorylation, and inhibition of nuclear translocation of NF-kappaB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-kappaB activation. Inhibition of PI3K by wortmannin attenuated IL-1beta-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1beta-induced activation of NF-kappaB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-kappaB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-kappaB.
|
184 |
Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritisShakibaei, M., Csaki, C., Nebrich, S., Mobasheri, A. January 2008 (has links)
No / Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.
|
185 |
Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cellsShakibaei, M., Buhrmann, C., Mobasheri, A. January 2011 (has links)
No / Resveratrol is a polyphenolic phytoestrogen that has been shown to exhibit potent anti-oxidant, anti-inflammatory, and anti-catabolic properties. Increased osteoclastic and decreased osteoblastic activities result in bone resorption and loss of bone mass. These changes have been implicated in pathological processes in rheumatoid arthritis and osteoporosis. Receptor activator of NF-kappaB ligand (RANKL), a member of the TNF superfamily, is a major mediator of bone loss. In this study, we investigated the effects of resveratrol on RANKL during bone morphogenesis in high density bone cultures in vitro. Untreated bone-derived cell cultures produced well organized bone-like structures with a bone-specific matrix. Treatment with RANKL induced formation of tartrate-resistant acid phosphatase-positive multinucleated cells that exhibited morphological features of osteoclasts. RANKL induced NF-kappaB activation, whereas pretreatment with resveratrol completely inhibited this activation and suppressed the activation of IkappaBalpha kinase and IkappaBalpha phosphorylation and degradation. RANKL up-regulated p300 (a histone acetyltransferase) expression, which, in turn, promoted acetylation of NF-kappaB. Resveratrol inhibited RANKL-induced acetylation and nuclear translocation of NF-kappaB in a time- and concentration-dependent manner. In addition, activation of Sirt-1 (a histone deacetylase) by resveratrol induced Sirt-1-p300 association in bone-derived and preosteoblastic cells, leading to deacetylation of RANKL-induced NF-kappaB, inhibition of NF-kappaB transcriptional activation, and osteoclastogenesis. Co-treatment with resveratrol activated the bone transcription factors Cbfa-1 and Sirt-1 and induced the formation of Sirt-1-Cbfa-1 complexes. Overall, these results demonstrate that resveratrol-activated Sirt-1 plays pivotal roles in regulating the balance between the osteoclastic versus osteoblastic activity result in bone formation in vitro thereby highlighting its therapeutic potential for treating osteoporosis and rheumatoid arthritis-related bone loss.
|
186 |
Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-kappaB and Src protein kinase signaling pathwaysShakibaei, M., Mobasheri, A., Lueders, C., Busch, F., Shayan, P., Goel, A. January 2013 (has links)
No / OBJECTIVE: Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells. METHODS: Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins. RESULTS: The individual IC50 of curcumin and 5-FU were approximately 20 microM and 5 microM in HCT116 cells and 5 microM and 1 microM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 microM and 1 microM in HCT116 and 5 microM and 0.1 microM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-kappaB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IkappaBalpha kinase activation and IkappaBalpha phosphorylation. CONCLUSIONS: Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-kappaB/PI-3K/Src pathways and NF-kappaB regulated gene products.
|
187 |
Die Regulation des humanen Lipopolysaccharid bindenden Proteins (hLBP)Hallatschek, Werner 26 January 2005 (has links)
Das Lipopolysaccharid Bindende Protein (LBP) ist ein überwiegend in der Leber synthetisiertes Akutphaseprotein. Es bindet den Zellwandbestandteil Lipopolysaccharid (LPS) Gram-negativer Bakterien und transportiert es zu zellulären Rezeptoren, wodurch das angeborene Immunsystem aktiviert wird. In dieser Arbeit wird die Regulation der LBP-Expression in Interleukin (IL)-1, IL-6 und Dexamethason (Dex) stimulierten humanen Hepatomzelllinien HuH-7 und HepG2 untersucht. Der wichtigste Stimulator ist dabei IL-6, dessen Wirkung über die Transkriptionsfaktoren (TF) Stat-3, C/EBP-beta und AP-1 vermittelt wird. Für alle 3 TF konnten aktive Bindungsstellen auf dem LBP-Promotor nachgewiesen werden. Für IL-1-Effekte die u. a. über den TF NF-kappaB vermittelt werden, konnten ebenfalls aktive Bindungsstellen nachgewiesen werden. Die Wirkung von Dex wird über Glucocorticoid Responsive Elements (GREs) vermittelt. Auf dem LBP-Promotor befinden, sich wie gezeigt werden konnte, mehrere aktive GREs, wobei einige verstärkend und einige hemmend wirken. Eine zu beobachtende Synergiewirkung von Dex und IL-6 wird durch die Aufregulation des IL-6-Rezeptors durch Dex verursacht. Die LBP-Expression kann durch TGF (Transforming Growth Factor)-beta gehemmt werden. Der TGF-beta-Signalweg über Smads ist in den Hepatomzellen aktiv, vermittelt aber nicht den TGF-beta-Hemmeffekt, sondern eine geringe stimulierende Wirkung, die bei alleiniger TGF-beta-Inkubation auftritt. Die inhibierende Wirkung von TGF-beta wird durch Gfi-1- und AP-1-Bindungsstellen vermittelt. Die Gfi-1-Bindungsstelle nimmt dabei, wie hier erstmals gezeigt werden konnte, eine herausragende Stellung ein. Die Aufklärung der LBP-Regulation und dabei besonders die Hemmung der LBP-Expression kann mittelfristig dazu beitragen, den klinischen Verlauf von inflammatorischen und infektiösen Erkrankungen zu beeinflussen und bietet daher Potenzial für neue Therapieansätze. / Lipopolysaccharide (LPS) binding protein (LBP) is an acute phase protein with the ability to bind and transfer LPS of Gram-negative bacteria. This soluble pattern recognition molecule represents an important defense principle of the host. Regulation of the hepatic acute phase response and its termination are important mechanisms for limiting systemic inflammatory activity of the host. Here were analyze the cooperation of Interleukin (IL)-1, IL-6, and Dexamethasone (Dex) at LBP expression in the hepatoma cell lines HuH-7 and Hep G2. The major inducer of LBP expression is IL-6. Within the LBP promoter numerously highly consensus binding sites such as AP-1, C/EBP-beta? and STAT3 are present, that confer transcriptional activity as shown by truncation and mutation experiments. Additionally, activate NF-kappaB sites activated by IL-1 were detected at the LBP promoter. By mutation experiments of the promoter furthermore were found differentially active glucocorticoid response elements (GREs). The promoter contains GREs enhancing the activity as well as inhibitory ones. The enhancing effect towards LBP expression by Dex was mediated by IL-6. Dex stimulated the expression of the IL-6 receptor and therefore upregulated the IL-6 pathway. Transforming Growth Factor (TGF)-beta is able to inhibit LBP expression in stimulated cells. An AP-1 binding site was identified mediating inhibitory TGF-beta effects towards LBP promoter activity. Furthermore it was shown that a growth factor independence (Gfi)-1 binding site localized near the AP-1 site is essential for mediating the TGF-beta inhibitory effect. The relevancy of the Gfi-1 site fore mediating TGF-beta effects indicates a novel mechanism for understanding inhibitory TGF-beta effects at the transcriptional level. In summary the complex regulation of LBP were elucidate which may help to eventually develop novel intervention strategies for acute phase, sepsis, and septic shock.
|
188 |
Molecular Regulation of Interleukin-13 and Monocyte Chemoattractant Protein-1 Expression in Human Mast Cells by Interleukin-1betaLee, Steven A., Fitzgerald, S M., Huang, Shau K., Li, Chuanfu, Chi, David S., Milhorn, Denise M., Krishnaswamy, Guha 01 September 2004 (has links)
Mast cells play pivotal roles in immunoglobulin (Ig) E-mediated airway inflammation, expressing interleukin (IL)-13 and monocyte chemoattractant protein-1 (MCP-1), which in turn regulate IgE synthesis and/or inflammatory cell recruitment. The molecular effects of IL-1beta on cytokine expression by human mast cells (HMC) have not been studied well. In this report, we provide evidence that human umbilical cord blood-derived mast cells (CBDMC) and HMC-1 cells express the type 1 receptor for IL-1. We also demonstrate that IL-1beta and tumor necrosis factor-alpha are able to induce, individually or additively, dose-dependent expression of IL-13 and MCP-1 in these cells. The induction of IL-13 and MCP-1 gene expression by IL-1beta was accompanied by the activation of IL-1 receptor-associated kinase and translocation of the transcription factor, nuclear factor (NF) kappaB into the nucleus. Accordingly, Bay-11 7082, an inhibitor of NF-kappaB activation, inhibited IL-1beta-induced IL-13 and MCP-1 expression. IL-1beta also induced IL-13 promoter activity while enhancing the stability of IL-13 messenger RNA transcripts. Dexamethasone, a glucocorticoid, inhibited IL-1beta-induced nuclear translocation of NF-kappaB and also the secretion of IL-13 from mast cells. Our data suggest that IL-1beta can serve as a pivotal costimulus of inflammatory cytokine synthesis in human mast cells, and this may be partly mediated by IL-1 receptor-binding and subsequent signaling via nuclear translocation of NF-kappaB. Because IL-1beta is a ubiquitously expressed cytokine, these findings have important implications for non-IgE-mediated signaling in airway mast cells as well as for innate immunity and airway inflammatory responses, such as observed in extrinsic and intrinsic asthma.
|
Page generated in 0.0392 seconds