11 |
Applying isotope geochemistry to identify mechanisms regulating the aquatic-terrestrial carbon and nitrogen dynamics across scales in a moraine landscapeNitzsche, Kai 24 May 2017 (has links)
In dieser Studie wurden stabile Isotopenverhältnisse genutzt um die Mechanismen der aquatisch-terrestrischen C – und N-Dynamiken über verschiedene Skalenebenen hinweg in der Moränenlandschaft von Nordostdeutschland zu identifizieren; einer Landschaft, die stark landwirtschaftlich genutzt wird und in der es eine Vielzahl von kleinen Wasserkörpern (Sölle) gibt. Auf der regionalen Landschaftsskala spiegeln d13C-Isotopenkarten des org. Materials in Oberböden und von Pflanzenblättern eines 38.2 km2 großen Gebietes den Eintrag von org. Material von C3-Pflanzen, deren Wassernutzungseffizienz im org. Material des Bodens eingeprägt wurde, sowie den Eintrag von Mais (C4-Pflanze), wider. Die d15N-Isotopenkarte des org. Materials in Böden weist verschiedene Düngepraktiken hin. Auf der regionalen Sollskala deuten die d13C- und d15N-Isotopenwerte von Oberflächensedimenten von 51 Söllen auf kürzliche Einträge des org. Materials und Bewirtschaftungseffekte im Einzugsgebiet hin. Tiefere Sedimente sind durch die Ablagerung org. Materials von terrestrischen Pflanzen sowie dessen Umsetzungsgrad geprägt in Abhängigkeit von der Wasserführung. Auf der Transekt-Skala, d.h. entlang von Transekten von Erosions- zu Depositionsgebieten im Einzugsgebiet eines Solls, beeinflussen Erosion, Pflanzenproduktion, mikrobielle Umsetzung und Gülledüngung verschiedene Fraktionen des org. Materials. Auf der Aggregat-Skalenebene sind die Art und der Anteil spezifischer organo-mineral Assoziationen entlang des Transekts variabel. Bodenpartikel vom Feld und hereinwachsende Makrophyten sind die Quellen des org. Materials in Sedimenten. Diese Studie hat erfolgreich stabile Isotopenverhältnisse zur Identifikation von Mechanismen der C- und N-Dynamik auf individuellen Skalenebenen angewendet. Kleine Inlandwasserkörper sind Schlüsselelemente für die C- und N-Dynamik in landwirtschaftlich genutzten Moränenlandschaften. / In moraine landscapes, carbon (C) and nitrogen (N) dynamics can vary greatly across landscape structures and soil types especially when small water bodies are interspersed in the landscape. This study used stable isotope ratios to identify the mechanisms regulating the aquatic-terrestrial C and N dynamics across different scales in the young moraine landscape of NE Germany – a landscape intensively used for agriculture and interspersed with countless of small water bodies, the so-called kettle holes. At the regional landscape scale, d13C isoscapes of topsoil bulk soil organic matter (SOM) and plant leaves collected from a 38.2 km2 area revealed long-term inputs OM from C3 crops, which imprinted their water use efficiency status onto the soil, as well as short-term inputs from corn. The d15N SOM isoscape identified fertilization-induced impacts on the N dynamics of agricultural fields and grasslands. At the regional kettle hole scale, d13C and d15N of surface sediments of 51 kettle holes reflected recent OM inputs and management practices in the catchment. Deeper sediments recorded the degree to which the OM has been processed within the kettle hole depending on the water-logging period. At the transect scale, erosion, plant productivity, microbial decomposition and slurry fertilization affected OM fractions in topsoil along transects spanning erosional to depositional areas in the catchment of one arable kettle hole. At the aggregate scale, the pathway and magnitude of OM-mineral associations changed along the transect. OM in sediments was derived from clay- and silt-sized particles from the field, together with emergent macrophyte contributions. By means of stable isotopes techniques, different mechanisms were identified at the individual scales. Consideration of the spatial heterogeneity of all scales is essential to understand landscape C and N dynamics. Small inland water bodies are key constituents of C and N dynamics in moraine agricultural landscapes.
|
12 |
Effects of cow urine and its constituents on soil microbial populations and nitrous oxide emissionsBertram, Janet January 2009 (has links)
New Zealand’s 5.3 million strong dairy herd returns approximately 106 million litres of urine to pasture soils daily. The urea in that urine is rapidly hydrolysed to ammonium (NH₄⁺), which is then nitrified, with denitrification of nitrate (NO₃⁻) ensuing. Nitrous oxide (N₂O), a potent greenhouse gas (GHG), is produced via nitrification and denitrification, which are enzyme-catalysed processes mediated by soil microbes. Thus microbes are linked intrinsically to urine patch chemistry. However, few previous studies have investigated microbial dynamics in urine patches. Therefore the objective of these four experiments was to investigate the effects on soil microbial communities of cow urine deposition. Methods used included phospholipid fatty acid (PLFA) analyses of microbial community structure and microbial stress, dehydrogenase activity (DHA) assays measuring microbial activity, and headspace gas sampling of N₂O, ammonia (NH₃) and carbon dioxide (CO₂) fluxes. Experiment 1, a laboratory study, examined the influence of soil moisture and urinary salt content on the microbial community. Both urine application and high soil moisture increased microbial stress, as evidenced by significant changes in PLFA trans/cis and iso/anteiso ratios. Total PLFAs and DHA showed a short-term (< 1 week) stimulatory effect on microbes after urine application. Mean cumulative N₂O-N fluxes were 2.75% and 0.05% of the nitrogen (N) applied, from the wet (70% WFPS) and dry (35% WFPS) soils, respectively. Experiment 2, a field trial, investigated nutrient dynamics and microbial stress with plants present. Concentrations of the micronutrients, copper, iron and molybdenum, increased up to 20-fold after urine application, while soil phosphorus (P) concentrations decreased from 0.87 mg kg ⁻¹ to 0.48 mg kg⁻¹. Plant P was also lower in urine patches, but total PLFAs were higher, suggesting that microbes had utilised the available nutrients. Microbial stress again resulted from urine application but, in contrast to experiment 1, the fungal biomass recovered after its initial inhibition. Studies published during the course of this thesis reported that hippuric acid (HA) and its hydrolysis product benzoic acid (BA) significantly reduced N₂O-N emissions from synthetic cow urine, thus experiment 3 investigated this effect using real cow urine. Cumulative N₂O-N fluxes were 16.8, 5.9 and 4.7% of N applied for urine (U) alone, U+HA and U+BA, respectively. Since NH₃-N volatilisation remained unchanged, net gaseous N emissions were reduced. Trends in total PLFAs and microbial stress were comparable to experiment 1 results. Experiment 4 studied HA effects at different temperatures and found no inhibition of N₂O-N fluxes from HA-amended urine. However, mean cumulative N₂O-N fluxes were reduced from 7.6% of N applied at 15–20°C to 0.2% at 5–10°C. Total cumulative N emissions (N₂O-N + NH₃-N) were highest at 20°C (17.5% of N applied) and lowest at 10°C (9.8% of N applied). Microbial activity, measured as potential DHA, increased with increasing temperature. This work has clearly shown that the stimulation and inhibition of the soil microbial community by urine application are closely linked to soil chemistry and have significant impacts not only on soil nutrient dynamics but also on N₂O-N emissions and their possible mitigation.
|
Page generated in 0.0679 seconds