Spelling suggestions: "subject:"nonnewtonian fluid"" "subject:"nonewtonian fluid""
61 |
Simulação de escoamento de fluidos em superfícies definidas por pontos não organizados / Fluid flow simulation in surfaces defined by non-organized pointsKémelli Campanharo Estacio 24 October 2008 (has links)
Atualmente diversos produtos são fabricados por meio de injeção de polímeros, num processo denominado moldagem por injeção: material fundido é injetado em um molde no qual resfria e endurece. Contudo, ao contrário de outros processos de produção, a qualidade da peça criada por meio de moldagem por injeção não depende apenas do material e da sua forma geométrica, mas também da maneira na qual o material é processado durante a moldagem. Por esse motivo, o uso de modelagem matemática e simulações numéricas tem aumentado consideravelmente como maneira de auxiliar o processo de produção e tem-se tornado uma ferramenta indispensável. Desta forma, este projeto tem o propósito de simular o escoamento de fluidos durante a fase de preenchimento do processo de moldagem por injeção, utilizando o modelo 21/2-dimensional, composto por uma equação bidimensional para a pressão, conhecida como equação de Hele-Shaw, e uma equação tridimensional para a temperatura do fluido. Um modelo bidimensional para a temperatura é também desenvolvido e apresentado. Este projeto de doutorado propõe duas estratégias numéricas para a solução da equação de Hele-Shaw. A primeira delas é baseada em uma formulação euleriana do método Smoothed Particle Hydrodynamics, onde os pontos utilizados na discretização não se movem, e não há utilização de malhas. A segunda estratégia é baseada na criação de malhas dinamicamente construídas na região do molde que já encontra-se parcialmente cheio de fluido e subseqüente aplicação do método Control Volume Finite Element Method. Uma estratégia dinâmica do método semi lagrangeano é apresentada e aplicada à solução da equação bidimensional da temperatura. O projeto também pretende investigar três novas abordagens para o tratamento da superfície livre. Duas delas são baseadas na técnica Volume of Fluid e uma delas é uma adaptação meshless do método Front-Tracking. O comportamento não newtoniano do fluido é caracterizado por uma família de modelos de viscosidade. Testes numéricos indicando a confiabilidade das metodologias propostas são conduzidos / Currently, several plastic products are manufactured by polymer injection, in a process named injection molding: molten material is injected into a thin mold where it cools and solidifies. However, unlike other manufacturing processes, the quality of injection-molded parts depends not only on the material and shape of the part, but also on how the material is processed throughout the molding. For this reason, the use of mathematical modelling and numerical simulations has been increasing in order to assist in the manufacturing process, and it has become an essential tool. Therefore, this Sc.D. project has the purpose of simulating the fluid flow during the filling stage of the injection molding process, using the 21/2-dimensional model, compounded by a two-dimensional equation for the pressure field (also known as Hele-Shaw equation) and a three-dimensional equation for the temperature of the fluid. A simpler two-dimensional model for the temperature field is also derived and presented. This project proposes two novel numerical strategies for the solution of Hele-Shaw equation. The first one is based on an Eulerian formulation of the Smoothed Particle Hydrodynamics method, where the particles used in the discretization do not move along as the simulation evolves, thereby avoing the use of meshes. In the second strategy, local active dual patches are constructed on-the-fly for each active point to form a dynamic virtual mesh of active elements that evolves with the moving interface, then the Control Volume Finite Element Method is applied for the pressure field approximation. A dynamic approach of the semi-Lagrangian scheme is applied to the solution of the two-dimensional temperature equation. The project also assesses three new approaches for the treatment of the free surface of the fluid flow. Two of them are based on the Volume of Fluid technique and one of them is a meshless adaptation of the Front-Tracking method. The non-Newtonian behavior is characterized by a family of generalized viscosity models. Supporting numerical tests and performance studies, which assess the accuracy and the reliability of the proposed methodologies, are conducted
|
62 |
Elasticity induced instabilitiesManish Kumar (9575750) 27 April 2022 (has links)
<p>The present dissertation focuses on two themes: (i) elastic instability of flow and (ii) elastic instability of microscopic filaments.</p>
<p><br></p>
<p>(i) The presence of macromolecules often leads to the viscoelastic nature of industrial and biological fluids. The flow of viscoelastic fluids in porous media is important in many industrial, geophysical, and biological applications such as enhanced oil recovery, groundwater remediation, biofilm formation, and drug delivery. The stretching of polymeric chains as the viscoelastic fluid passes through the microstructure of the porous media induces large elastic stresses, which leads to viscoelastic instability at the Weissenberg number greater than a critical value, where the Weissenberg number quantifies the ratio of elastic to viscous forces. Viscoelastic instability can lead to a time-dependent chaotic flow even at negligible inertia, which is sometimes also known as elastic turbulence due to its analogous features to traditional inertial turbulence. In the present thesis, we investigate the pore-scale viscoelastic instabilities and the flow states induced by the instabilities in symmetric and asymmetric geometries. We found that the topology of the polymeric stress field regulates the formation of different flow states during viscoelastic instabilities. Viscoelastic instability-induced flow states exhibit hysteresis due to the requirement of a finite time for the transformation of polymeric stress topology. Further, we study viscoelastic flows through ordered and disordered porous geometries and explore the effect of viscoelastic instability on sample-scale transport properties. Viscoelastic instability enhances transverse transport in ordered porous media and longitudinal transport in disordered porous media. We also derive a relationship between the polymeric stress field and the Lagrangian stretching field. The Lagrangian stretching field helps to predict the feature of flow states and transport in complex flows. The experimental measurement of the polymeric stress field is extremely challenging. The framework established here can be used to obtain the topology of the polymeric stress field directly from the easily measured velocity field. </p>
<p><br></p>
<p><br></p>
<p>(ii) The interaction between flow and elastic filaments plays an important role in sperm and bacterial motility and cell division. The sperm cells of many organisms use long elastic flagellum to propel themselves and also face complex flows and boundaries during their search for egg cells. Strong flows have the potential to mechanically inhibit flagellar motility through elastohydrodynamic interactions. We explore the effects of an extensional flow on the buckling dynamics of sperm flagella through detailed numerical simulations and microfluidic experiments. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, which represents the ratio of viscous force to elastic force. Shear flows navigate the sperm cells in complex geometries and flows. We have also studied the effect of flow strength and flagellar elastic deformation on the sperm trajectory in simple shear and Poiseuille flows.</p>
|
63 |
Experimentelle Untersuchungen zur Schichtbildung im Tiefdruck mittels hydrophobierter Druckform mit Applikationsbeispielen aus dem Bereich der gedruckten OPVTrnovec, Bystrik 29 June 2015 (has links)
Die vorliegende Arbeit beschreibt eine experimentelle Untersuchung der Schichtbildung von nichtnewtonschen Flüssigkeiten im Tiefdruckverfahren auf nicht saugfähigen Substraten. Das fluiddynamisch bedingte „viscous fingering“ beim Farbspaltungsprozess soll mittels Hydrophobieren der Druckform gehemmt werden. Ziel ist es, möglichst homogene sowie wellenfreie Schichten zu erzeugen. Um ein direkt miteinander vergleichbares Druckergebnis zu erhalten, wird der Druckstoff parallel mit einer unbehandelten und hydrophobierten Form bedruckt. Als Druckstoff werden anstelle von Druckfarbe funktionale Materialien (vorzugsweise PEDOT:PSS) verwendet und variiert, wobei die elektrischen und geometrischen Schichteigenschaften, beispielsweise der elektrische Widerstand und die Rauheit, zur Ermittlung der gesetzten Ziele untersucht wurden. Hiermit und mittels Nutzung einer hydrophobierten Druckform kann eine deutliche Minderung der Wellenbildung (viscous fingering) bei vielen Druckstoffarten beobachtet werden. Die Minderung des viscous fingering im Farbspaltungsprozess und eine nahezu vollständige Leerung der hydrophobierten Tiefdruckform haben einen wesentlichen Nutzwert für den künftigen Einsatz nicht nur für die „gedruckte Elektronik“. / In this work is described experimental research about layer forming from non-Newtonian fluids in gravure printing on non-porous substrates. The viscous fingering, caused through fluid dynamics at splitting of printed material should be decreased by hydrophobic-surface modification of gravure printing form. The aim was to print wave-free homogenous layers. To achieve comparable results, modified and pure form were used simultaneously to print the same material. The printed material was mainly PEDOT:PSS and other, which is used in printed electronics. The properties (surface tension, viscosity) of printed materials were varied by additives. Printing conditions were varied too. The characteristic of printed layers were studied: resistivity, roughness, density, etc. The results shows decreasing of waviness, roughness and viscous fingering in final layer through use of hydrophobic gravure printing form, compared to print results with common printing form. This can be applied not only in the field of printed electronics.
|
64 |
[en] BREAKUP OF TWO-LAYER LIQUID FILMS / [pt] QUEBRA DE UM FILME DE LÍQUIDO COMPOSTO POR DUAS CAMADASPEDRO HENRIQUE SOUZA CALDERANO 23 August 2021 (has links)
[pt] Filmes finos de líquido estão presentes em uma variedade de sistemas
e aplicações. Estamos interessados em filmes compostos por duas camadas,
que são comuns no processo de revestimento por cortina. No revestimento por
cortina, o líquido cai de uma matriz formando uma cortina formada por um
filme fino antes de molhar o substrato em movimento. Um dos limites mais
importantes do processo é a ruptura da cortina, que define um limite inferior
para a vazão do líquido de revestimento. Consequentemente, este limite inferior
da vazão define a espessura mínima viável do filme depositado. Evidências
experimentais mostraram que o uso de uma cortina compostas por duas
camadas, com uma das camadas sendo mais fina e viscoelástica, pode atrasar a
ruptura da cortina para taxas de fluxo mais baixas. A quebra de filmes líquidos
de duas camadas, compostas por um líquido newtoniano e um viscoelástico,
é estudado por meio da resolução das equações diferenciais que descrevem a
evolução da configuração do filme até seu rompimento. O efeito de diferentes
parâmetros no tempo de ruptura é determinado. Os resultados mostram o
mesmo comportamento observado experimentalmente, a fina camada de líquido
viscoelástico retarda o rompimento, estabilizando o filme líquido. / [en] Thin liquid sheets are present in a variety of systems and applications.
Here, we are interested in double-layered sheets, which are common in the
curtain coating process. In curtain coating, the liquid falls from a die forming a thin curtain before wetting the moving substrate. One of the most important process limits is the curtain breakup, which sets a lower limit for the coating liquid flow rate. Consequently, this flow rate lower limit defines the feasible minimum deposited film thickness. Experimental evidence have shown that using a two-layer curtain, with a viscoelastic thin layer, may delay the curtain breakup to lower flow ratios. The breakup of two-layer liquid sheets, composed of a Newtonian and a viscoelastic liquid, is studied by solving the differential equations that describe the evolution of the liquid sheet configuration until breakup. The effect of different parameters on the breakup time is determined. The results show the same behavior observed experimentally, thin viscoelastic liquid layer delays the breakup, stabilizing the liquid sheet.
|
65 |
Shear Induced Migration of Particles in a Yield Stress FluidGholami, Mohammad January 2017 (has links)
No description available.
|
66 |
Numerical modelling of mixing and separating of fluid flows through porous mediaKhokhar, Rahim Bux January 2017 (has links)
In present finite element study, the dynamics of incompressible isothermal flows of Newtonian and two generalised non-Newtonian models through complex mixing-separating planar channel and circular pipe filled with and without porous media, including Darcy's term in momentum equation, is presented. Whilst, in literature this problem is solved only for planar channel flows of Newtonian and viscoelastic fluids. The primary aim of this study is to examine the laminar flow behaviour of Newtonian and inelastic non-Newtonian fluids, and investigate the robustness of the numerical algorithm. The rheological properties of non-Newtonian fluids are defined utilising a range of constitutive equations, for inelastic non-Newtonian fluids non-linear viscous models, such as Power Law and Bird-Carreau models are used to capture the shear thinning behaviour of fluids. To simulate such complex flows, steady-state solutions are sought employing time-dependent finite element algorithm. Temporal derivatives are discretised using second order Taylor series expansion, while, spatial discretisation is achieved through Galerkin approximation in combination to deal with incompressibility a pressure-correction scheme adopted. In order to achieve the algorithm of semi-implicit form Darcy's-Brinkman equation is utilized for the conversion in Darcy's terms and diffusion, while Crank-Nicolson approach is adopted for stability and acceleration. Simple and complex flows for various complex flow bifurcations of the combined mixing-separating geometries, for both two-dimensional planar channel in Cartesian coordinates, as well as axisymmetric circular tube in cylindrical polar coordinates system are investigated. These geometries consist of a two-inverted channel and pipe flows connected through a gap in common partitions, initially filled with non-porous materials and later with homogeneous porous materials. Computational domain is having variety it has been investigated with many configurations. These computational domains have been appeared in industrial applications of combined mixing and separating of fluid flows both for porous and non-porous materials. Fully developed velocity profile is applied on both inlets of the domain by imposing analytical solutions found during current study for porous materials. Numerical study has been conducted by varying flow rates and flow direction due to a variety in the domain. The influence of varying flow rates and flow directions are analysed on flow structure. Also the impact of increasing inertia, permeability and power law index on flow behaviour and pressure difference are investigated. From predicted solution of present numerical study, for Newtonian fluids a close agreement is realised between numerical solutions and experimental data. During simulations, it has been noticed that enhancing fluid inertia (flow rates), and permeability has visible effects on the flow domains. When the Reynolds number value increases the size and power of the vortex for recirculation increases. Under varying flow rates an early activity of vortex development was observed. During change in flow directions reversed flow showed more inertial effects as compared with unidirectional flows. Less significant influence of inertia has been observed in domains filled with porous media as compared with non-porous. The power law model has more effects on inertia and pressure as compared with Bird Carreau model. Change in the value of permeability gave significant impact on pressure difference. Numerical simulations for the domain and fluids flow investigated in this study are encountered in the real life of mixing and separating applications in the industry. Especially this purely quantitative numerical investigation of flows through porous medium will open more avenues for future researchers and scientists.
|
67 |
Setkání témat přírodních věd a teologie při výuce na gymnáziu / Common topics of Science and Theology in high school educationČANDOVÁ, Jana January 2012 (has links)
In the introduction this thesis classifies different conceptions of the relationship between science and faith. Then, it focuses on common topics of natural science and theology in secondary education. It summarises and reflects the experience of teaching practice and deals with the practical options for Christian issues which the students are usually interested in. The topics are presented in relation to a specific high school curricula and sorted into three parts: Death and dysthanasia, Time and rheology, Deus vere ludens et homo ludens. Some practical examples and recommendation for teaching practice are also mentioned.
|
68 |
Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure fieldMayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução
de escoamentos de fluidos newtonianos incompressíveis, baseado no método de
partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente,
duas estratégias são utilizadas na determinação do campo de pressões
de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas
é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH),
onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação
do campo de pressões. A segunda, emprega o Método da Projeção e o campo
de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui
desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para
o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH).
A fim de validar os métodos iterativos e o código computacional, foram simulados dois
problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas
infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno
do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento
no interior de uma cavidade com a parede superior posta em movimento, também foi
considerado. Na resolução deste problema foi utilizado o reposicionamento periódico
de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible
Newtonian fluid flows, based on the meshfree Lagrangian Smoothed
Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to
determine the pressure field to ensure the incompressibility of the fluid flow. The first
is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in
which an equation of state for a quasi-incompressible fluid is used to determine the
pressure field. The second employs the Projection Method and the pressure field is
obtained by solving a Poissons equation. In the study developed here, we have proposed
three iterative methods based on the Projection Method to calculate the pressure
field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to
validate the iterative methods and the computational code we have simulated two
one-dimensional problems: the Couette flow between two infinite parallel flat plates
and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost
particles have been used. A two-dimensional problem, the lid-driven cavity flow, has
also been considered. In solving this problem we have used a periodic repositioning
technique and ghost particles.
|
69 |
Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure fieldMayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução
de escoamentos de fluidos newtonianos incompressíveis, baseado no método de
partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente,
duas estratégias são utilizadas na determinação do campo de pressões
de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas
é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH),
onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação
do campo de pressões. A segunda, emprega o Método da Projeção e o campo
de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui
desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para
o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH).
A fim de validar os métodos iterativos e o código computacional, foram simulados dois
problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas
infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno
do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento
no interior de uma cavidade com a parede superior posta em movimento, também foi
considerado. Na resolução deste problema foi utilizado o reposicionamento periódico
de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible
Newtonian fluid flows, based on the meshfree Lagrangian Smoothed
Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to
determine the pressure field to ensure the incompressibility of the fluid flow. The first
is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in
which an equation of state for a quasi-incompressible fluid is used to determine the
pressure field. The second employs the Projection Method and the pressure field is
obtained by solving a Poissons equation. In the study developed here, we have proposed
three iterative methods based on the Projection Method to calculate the pressure
field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to
validate the iterative methods and the computational code we have simulated two
one-dimensional problems: the Couette flow between two infinite parallel flat plates
and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost
particles have been used. A two-dimensional problem, the lid-driven cavity flow, has
also been considered. In solving this problem we have used a periodic repositioning
technique and ghost particles.
|
70 |
Theoretical and experimental study of non-spherical microparticle dynamics in viscoelastic fluid flowsCheng-Wei Tai (12198344) 06 June 2022 (has links)
<p>Particle suspensions in viscoelastic fluids (e.g., polymeric fluids, liquid crystalline solutions, gels) are ubiquitous in industrial processes and in biology. In such fluids, particles often acquire lift forces that push them to preferential streamlines in the flow domain. This lift force depends greatly on the fluid’s rheology, and plays a vital role in many applications such as particle separations in microfluidic devices, particle rinsing on silicon wafers, and particle resuspension in enhanced oil recovery. Previous studies have provided understanding on how fluid rheology affects the motion of spherical particles in simple viscoelastic fluid flows such as shear flows. However, the combined effect of more complex flow profiles and particle shape is still under-explored. The main contribution of this thesis is to: (a) provide understanding on the migration and rotation dynamics of an arbitrary-shaped particle in complex flows of a viscoelastic fluid, and (b) develop guidelines for designing such suspensions for general applications.</p>
<p><br></p>
<p>In the first part of the thesis, we develop theories based on the second-order fluid (SOF) constitutive model to provide solutions for the polymeric force and torque on an arbitrary-shaped solid particle under a general quadratic flow field. When the first and second normal stress coefficients satisfy <strong>Ψ</strong><sub>1</sub> = −2 <strong>Ψ</strong> <sub>2</sub> (corotational limit), the fluid viscoelasticity modifies only the fluid pressure and we provide exact solutions to the polymer force and torque on the particle. For a general SOF with <strong>Ψ</strong> <sub>1</sub> ≠ −2 <strong>Ψ</strong> <sub>2</sub>, fluid viscoelasticity modifies the shear stresses, and we provide a procedure for numerical solutions. General scaling laws are also identified to quantify the polymeric lift based on different particle shapes and orientation. We find that the particle migration speed is directly proportional to the length the particle spans in the shear gradient direction (L<sub>sg</sub>), and that polymeric torques lead to unique orientation behavior under flow.</p>
<p><br></p>
<p>Secondly, we investigate the migration and rotational behavior of prolate and oblate spheroids in various viscoelastic, pressure-driven flows. In a 2-D slit flow, fluid viscoelasticity causes prolate particles to transition to a log-rolling motion where the particles orient perpendicular to the flow-flow gradient plane. This behavior leads to a slower overall migration speed (i.e., lift) of prolate particles towards the flow centerline compared to spherical particles of the same volume. In a circular tube flow, prolate particles align their long axis along the flow direction due to the extra polymer torque generated by the velocity curvature in all radial directions. Again, this effect causes prolate particles to migrate slower to the flow centerline than spheres of the same volume. For oblate particles, we quantify their long-time orientation and find that they migrate slower than spheres of the same volume, but exhibit larger migration speeds than prolate particles. Lastly, we examine the effect of normal stress ratio ? <strong>α</strong> = <strong>Ψ</strong> <sub>2</sub> /<strong>Ψ</strong><sub>1 </sub>on the particle motion and find that this parameter only quantitatively impacts the particle migration velocity but has negligible effect on the rotational dynamics. We therefore can utilize the exact solution derived under the corotational limit (?<strong>α</strong> = −1/2) for a quick and reasonable prediction on the particle dynamics.</p>
<p><br></p>
<p>We next experimentally investigate the migration behavior of spheroidal particles in microfluidic systems and draw comparisons to our theoretical predictions. A dilute suspension of prolate/oblate microparticles in a density-matched 8% aqueous polyvinylpyrrolidone (PVP) solution is used as the model suspension system. Using brightfield microscopy, we qualitatively confirm our theoretical predictions for flow Deborah numbers 0 < De < 0.1 – i.e., that spherical particles show faster migration speed than prolate and oblate particles of the same volume in tube flows.</p>
<p><br></p>
<p>We finally design a holographic imaging method to capture the 3-D position and orientation of dynamic microparticles in microfluidic flow. We adopt in-line holography setup and propose a straightforward hologram reconstruction method to extract the 3-D position and orientation of a non-spherical particle. The method utilizes image moment to locate the particle and localize the detection region. We detect the particle position in the depth direction by quantifying the image sharpness at different depth position, and uses principal component analysis (PCA) to detect the orientation of the particle. For a semi-transparent particle that produces complex diffraction patterns, a mask based on the image moment information can be utilized during the image sharpness process to better resolve the particle position.</p>
<p><br></p>
<p>In the last part of this thesis, we conclude our work and discuss the future research perspectives. We also comment on the possible application of current work to various fields of research and industrial processes.</p>
<p><br></p>
|
Page generated in 0.0739 seconds