• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 129
  • 46
  • 34
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 486
  • 486
  • 106
  • 101
  • 97
  • 96
  • 94
  • 80
  • 74
  • 70
  • 66
  • 54
  • 52
  • 49
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

High-Resolution, High-Frequency Modal Analysis for Instrumented Buildings

Sarlo, Rodrigo 02 August 2018 (has links)
Civil infrastructure failure is hard to predict, both in terms of occurrence and impact. This is due to combination of many factors, including highly variable environmental and operational conditions, complex construction and materials, and the sheer size of these structures. Often, the mitigation strategy is visual inspection and regular maintenance, which can be time-consuming and may not address root causes of failure. One potential solution to anticipating infrastructure failure and mitigating its consequences is the use of distributed sensors to monitor the physical state of a structure, an area of research known commonly as structural health monitoring, or SHM. This approach can be applied in a variety of contexts: safety during and after natural disasters, evaluation of building construction quality and life-cycle assessment for performance based design frameworks. In one way or another, SHM methods always require a ``baseline,'' a set of physical features which describes the behavior of a healthy structure. Often, the baseline is defined in terms of modal parameters: natural frequencies, damping ratios, and mode shapes. Although changes in modal parameters are indicative of structural damage, they are also indicative of a slew of non-damage factors, such as signal-to-noise ratio, environmental conditions, and the characteristics of forces exciting the structure. In many cases, the degree of observed modal parameter changes due to non-damage factors can be much greater than that due to damage itself. This is especially true of low-frequency modal parameters. For example, the fundamental frequency of a building is more sensitive to global influences like temperature than local structural changes like a cracked column. It has been proposed that extracting modal parameters at higher frequencies may be the key to improving the damage-sensitivity of SHM methods. However, for now, modal analysis of civil structures has been limited to low frequency ambient excitation and sparse sensor networks, due to practical limitations. Two key components for high-frequency modal analysis have yet to be studied: 1) Sufficient excitation at high frequencies and 2) high-resolution (high sensor density) measurements. The unifying goal of this work is to expand modal analysis in these two areas by applying novel instrumentation and experimental methods to two full-scale buildings, Goodwin Hall and Ernest Cockrell Jr. Hall. This enables realistic, practical insights into the limitations and benefits of the high-frequency SHM approach. Throughout, analyses are supported through the novel integration of uncertainty quantification techniques which so far has been under-utilized in the field. This work is divided into three experimental areas, with approaches centering on the identification of modal parameters. The first area is the application of high spacial resolution sensor networks in combination to ambient vibration testing. The second is the implementation of a robust automation and monitoring strategy for complex dynamic structures. The third is the testing of a novel method for performing experimental modal analysis on buildings emph{in situ}. The combination of results from these experiments emphasizes key challenges in establishing reliable high-frequency, high-resolution modal parameter ``baselines'' for structural health monitoring (SHM) of civil infrastructure. The first study presented in this work involved the identification of modal parameters from a five-story building, Goodwin Hall, using operational modal analysis (OMA) on ambient vibration data. The analysis began with a high spacial density network of 98 accelerometers, later expanding this number to 117. A second extensional study then used this data as reference to implement a novel automation method, enabling the identification of long-term patterns in the building's response behavior. Three dominant sources of ambient excitation were identified for Goodwin Hall: wind, human-induced loading, and consistent low-level vibrations from machinery, etc. It was observed that the amplitude of excitation, regardless of source, had significant effects on the estimated natural frequencies and damping ratios. Namely, increased excitation translated to lower natural frequencies and higher damping. In addition, the sources had different characteristics in terms of excitation direction and bandwidth, which contributed to significantly different results depending on the ambient excitation employed. This has significant implications for ambient-based methods that assume that all ambient vibrations are broadband random noise. The third and final study demonstrated the viability of emph{in situ} seismic testing for controlled excitation of full-scale civil structures, also known as experimental modal analysis (EMA). The study was performed by exciting Ernest Cockrell Jr. Hall in Austin, Texas with both vertical and lateral ground waves from seismic shaker truck, T-Rex. The EMA results were compared to a standard operational modal analysis (OMA) procedure which relies on passive ambient vibrations. The study focused on a frequency bandwidth from 0 to 11 Hz, which was deemed high frequency for such a massive structure. In cases were coherence was good, the confidence comparable or better than OMA, with the added advantage that the EMA tests took only a fraction of the time. The ability to control excitation direction in EMA enabled the identification of new structural information that was not observed OMA. It is proposed that the combination of high spacial resolution instrumentation and emph{in situ} excitation have the potential to achieve reliable high-frequency characterization, which are not only more sensitive to local damage but also, in some cases, less sensitive to variations in the excitation conditions. / Ph. D. / Civil structures, like buildings and bridges, become weaker as they age, increasing their risk of collapse due to sever weather, earthquakes, and heavy traffic. Engineers regularly inspect civil structures to ensure they are in good shape, but it is difficult do a full assessment by eye since many defects can be hidden. Structural Health Monitoring, or SHM for short, is an approach that uses permanent vibration sensors to continuously inspect civil structures. Any activity, like blowing wind or moving traffic on bridge, produces small vibrations which can be analyzed to assess the “health” of the structure. This approach can detect some invisible defects, but there is still debate about whether it can detect them when they are small and early on in the life of a structure. If SHM can’t issue early warnings, then there is little incentive to spend large amounts of money on a sensor system. To capture small defects, a sensor system needs a large number of sensors, hence the term high-resolution in the title. In addition, the structure being tested needs to vibrate rapidly (that is at high-frequencies) in order for the high-resolution information to be useful. So far, there have been no tests of this kind on civil structures, especially buildings. Instead, most sensor systems have contained a relatively low number of sensors tested with low-frequency vibrations. This works fills in this gap by testing two different buildings with SHM sensor systems. The first experiment uses a very high number of sensors to analyze the vibrations of Goodwin Hall on the Virginia Tech campus. The vibrations in this building are produced by wind and people walking inside. The second experiment uses a standard number of sensors, but explores a new method of vibrating buildings. This method uses a truck with a large hydraulic piston to shake the ground near the E. Cockrell Jr. building (University of Austin-Texas), essentially creating a tiny earthquake. The experiments show that both testing techniques provide more useful information than standard ones alone. For the first experiment, using more sensors meant the analysis could better distinguish the structural characteristics of the building. For the second, the artificial “earthquake” enabled the measurement of high-frequency vibrations, something which was not possible by relying on wind or people to vibrate the building. Although these new approaches are not used to inspect for damage, they have laid the foundation for improving the early-warning capabilities of SHM systems. This could mean that buildings and other structures can be repaired sooner, remain in operation longer, and cost the owners less money in the end!
72

Stereovision Correction Using Modal Analysis

Lanier, Prather Jonathan 23 April 2010 (has links)
Presently, aerial photography remains a popular method for surveillance of landscapes, and its uses continually grow as it is used to monitor trends in areas such as plant distribution and urban construction. The use of computer vision, or more specifically stereo vision, is one common method of gathering this information. By mounting a stereo vision system on the wings of an unmanned aircraft it becomes very useful tool. This technique however, becomes less accurate as stereo vision baselines become longer, aircraft wing spans are increased, and aircraft wings become increasingly flexible. Typically, ideal stereo vision systems involve stationary cameras with parallel fields of view. For an operational aircraft with a stereo vision system installed, stationary cameras can not be expected because the aircraft will experience random atmospheric turbulence in the form of gusts that will excite the dominate frequencies of the aircraft. A method of stereo image rectification has been developed for cases where cameras that will be allowed to deflect on the wings of an fixed wing aircraft that is subjected to random excitation. The process begins by developing a dynamic model the estimates the behavior of a flexible stereo vision system and corrects images collected at maximum deflection. Testing of this method was performed on a flexible stereo vision system subjected to resonance excitation where a reduction in stereo vision distance error is shown. Successful demonstration of this ability is then repeated on a flying wing aircraft by the using a modal survey to understand its behavior. Finally, the flying wing aircraft is subjected to random excitation and a least square fit of the random excitation signal is used to determine points of maximum deflection suitable for stereo image rectification. Using the same techniques for image rectification in resonance excitation, significant reductions in stereo distance errors are shown. / Master of Science
73

Modal Analysis of the Ice-Structure Interaction Problem

Venturella, Michael Anthony 07 May 2008 (has links)
In the present study, the author builds upon the single degree of freedom ice-structure interaction model initially proposed by Matlock, et al. (1969, 1971). The model created by Matlock, et al. (1969, 1971), assumed that the primary response of the structure would be in its fundamental mode of vibration. In order to glean a greater physical understanding of ice-structure interaction phenomena, it was critical that this study set out to develop a multi-mode forced response for the pier when a moving ice floe makes contact at a specific vertical pier location. Modal analysis is used in which the response of each mode is superposed to find the full modal response of the entire length of a pier subject to incremental ice loading. This incremental ice loading includes ice fracture points as well as loss of contact between ice and structure. In this model, the physical system is a bottom supported pier modeled as a cantilever beam. The frequencies at which vibration naturally occurs, and the mode shapes which the vibrating pier assumes, are properties which can be determined analytically and thus a more precise picture of pier vibration under ice loading is presented. Realistic conditions such as ice accumulation on the pier modeled as a point mass and uncertainties in the ice characteristics are introduced in order to provide a stochastic response. The impact of number of modes in modeling is studied as well as dynamics due to fluctuations of ice impact height as a result of typical tidal fluctuations. A Poincaré based analysis following on the research of Karr, et al. (1992) is employed to identify any periodic behavior of the system response. Recurrence plotting is also utilized to further define any existing structure of the ice-structure interaction time series for low and high speed floes. The intention of this work is to provide a foundation for future research coupling multiple piers and connecting structure for a comprehensive ice-wind-structural dynamics model. / Master of Science
74

Operational Modal Analysis of Rolling Tire: A Tire Cavity Accelerometer Mediated Approach

Dash, Pradosh Pritam 31 July 2020 (has links)
The low frequency (0-500 Hz) automotive noise and vibration behavior is influenced by the rolling dynamics of the tire. Driven by pressing environmental concerns, the automotive industry has strived to innovate fuel-efficient and quieter powertrain systems over the last decade. This has eventually led to the prevalence of hybrid and electric vehicles. With the noise masking effect of the engine orders being absent, the interior structure-borne noise is dominated by the tire pavement interaction under 500 Hz. This necessitates an accurate estimation of rolling tire dynamics. To this date, there is no direct procedure available for modal analysis of rolling tires with tread patterns under realistic operating conditions. The present start-of-art laser vibrometer based non-contact measurements are limited to tread vibration measurement of smooth tires only in a lab environment. This study focuses on devising an innovative strategy to use a wireless Tire Cavity Accelerometer (TCA) and two optical sensors in a tire on drum setup with cleat excitation to characterize dynamics of tread vibration in an appreciably easier, time and cost-effective approach. In this approach, First, the TCA vibration signal in a single test run is clustered into several groups representing an array of virtual sensor position at different circumferential positions. Then modal identification has been performed using both parametric and non-parametric operational modal identification procedures. Furthermore, relevant conclusions are drawn about the observed modal properties of the tire under rolling including the limitations of the proposed method. The method proposed here, as is, can be applied to a treaded tire and can also be implemented in an on-road test setup. / Master of Science / The low frequency(0-500 Hz) interior noise and vibration of an automobile is primarily influenced by the dynamics of the rolling tire. In recent studies, the laser vibrometer with moving mirrors for measurement of vibration on the tread of a rotating tire has been used. However, these are limited to tires without tread pattern. In this study, an innovative experimental way of performing operational modal analysis using the Tire cavity Accelerometer (TCA) and optical sensors is presented. The proposed method is simpler in terms of instrumentation and cost and time-effective. This method, as is, can also be implemented in case of a treaded tire
75

Modeling The Acoustic Transmission Line With Applied Damping

Getz, Connor C 01 June 2024 (has links) (PDF)
The transmission line is an underappreciated style of loudspeaker enclosure characterized by an acoustic labyrinth stemming from the rear of the speaker driver. In practice, the transmission line enclosure produces airy sound uncharacteristic of other styles, at the cost of more pronounced resonant peaks. The most important practical drawback of this loudspeaker enclosure design is the difficulty of properly applying damping to these enclosures. Ideally, this difficulty can be mitigated using an analytical model that accurately predicts the SPL frequency response of a transmission line loudspeaker system for a given geometry and mass of damping material. This research takes the first step towards establishing such a model by developing a limited model for a simple enclosure geometry. Through the application of a modal analysis, this research predicts the frequency response of the enclosure for the first five modes, discusses the effect damping has on this response, and experimentally verifies the produced outputs. For the simplified transmission line enclosure, the developed model successfully predicts the target portion of the frequency response. The model produces accurate results for a range of damping levels using experimentally derived damping ratios for the first five modes. The resulting curves for each modal damping ratio allow for a set of novel damping ratios to be produced from an input mass of damping material. Through this process, an input mass of damping material produces the predicted frequency response for a straight, non-tapered transmission line enclosure. This prediction can make damping a transmission line enclosure much more efficient, allowing for transmission line loudspeakers to be more widely available.
76

Examination of the application and limitations of structural mode extraction via force apportionment

Estep, Robert Noah 13 February 2009 (has links)
This paper will discuss the use of force apportionment to isolate modes being excited by the sine-dwell technique. The effectiveness of the apportionment technique can be determined by examining the structural response as measured by laser vibrometry. First, the structure is investigated using impact-test-based modal extraction methods. Approximate mode shapes are determined by examining the phase resonance indicator function for the resonance responses at a number of reference points. By comparing condition numbers of submatrices of the approximate modal matrix, one can select the best positions for force application. The apportioned forces for a given mode are arrived at by requiring that the input energy excite only the mode of interest while the net amount of work on adjacent modes is zero. This method is illustrated on a 24 in. x 1.5 in. x 0.375 in. steel beam. The fourth bending mode is to be separated from the first torsional mode which is 26 Hz below the bending mode. The apportioned forces are applied and laser scans are acquired of the "modal" response. The laser allows detailed investigation of the deviations of the response from the theoretical fourth mode response. The scans reveal that the force apportionment technique used in this test case fails to reliably extract the theoretical modal response of a beam. A finite element model of the beam is created to verify that the apportionment technique works. Applying an apportioned force vector to the model shows that the method is capable of isolating the mode of interest. The interaction of the electrodynamic shaker, stinger, and force transducer with the structure is investigated as a possible explanation for the failure of the technique in experimentation. It is found that there exists axial and rotatory coupling which can influence the structural response of the test specimen and decrease the reliability of the apportionment technique. / Master of Science
77

Using Vibration Analysis to Determine Refrigerant Levels In an Automotive Air Conditioning System

Stasiunas, Eric Carl 15 July 2002 (has links)
Presently, auto manufacturers do not have do not have efficient or accurate methods to determine the amount of refrigerant (R-134a) in an air conditioning system of an automobile. In the research presented, vibration analysis is examined as a possible method to determine this R-134a amount. Initial laboratory tests were completed and experimental modal analysis methods were investigated. This approach is based on the hypothesis that the natural frequency of the accumulator bottle is a function of the mass of refrigerant in the system. Applying this theory to a working automotive air conditioning bench test rig involved using the roving hammer method—forcing the structure with an impact hammer at many different points and measuring the resulting acceleration at one point on the structure. The measurements focused on finding the natural frequency at the accumulator bottle of the air condition system with running and non-running compressor scenarios. The experimental frequency response function (FRF) results indicate distinct trends in the change of measured cylindrical natural frequencies as a function of refrigerant level. Using the proposed modal analysis method, the R-134a measurement accuracy is estimated at ±3 oz of refrigerant in the running laboratory system and an accuracy of ±1 oz in the non-running laboratory system. / Master of Science
78

Effects of welding on energy dissipation in a watertight bulkhead

Erskine, Jon S. 06 1900 (has links)
Approved for public release, distribution is unlimited / Ensign, United States Navy
79

Rotating Equipment Defect Detection Using the Algorithm of Mode Isolation

Wagner, Benjamin 03 May 2007 (has links)
Findings from a project involving rotating equipment defect detection using the Algorithm of Mode Isolation (AMI) are presented. The prototypical system evaluated is a rotating shaft, supported by hydrodynamic bearings at both ends, with one disk mounted to the shaft. Shaft cracks and bearing wear are the two equipment defects considered. An existing model of the prototypical system from the literature, termed the simplified model. is modified to simulate the presence of a transverse shaft crack at mid-span. This modified model is termed the standard model. Ritz series analysis, in conjunction with a previously published description of the compliance related to the presence of a transverse shaft crack, is used to describe the decrease in shaft stiffness associated with the crack. The directional frequency response function (dFRF) is shown in the literature to provide benefits over the standard frequency response function (FRF) in both system identification and shaft crack detection for rotating equipment. The existing version of AMI is modified to process dFRFs and termed Two-Sided AMI. The performance of Two-Sided AMI is verified through system identification work using both the simplified model and a rigid rotor model from the literature. The results confirm the benefits of using the dFRF for system identification of isotropic systems. AMI and Two-Sided AMI are experimental modal analysis (EMA) routines, which estimate modal properties based on a frequency domain expression of system response. Eigenvalues and associated modal residues are the modal properties considered in the present work. Three defect detection studies are fully described. In the first, the simplified model is used to investigate bearing wear detection. Various damage metrics related to the eigenvalue and the residue are evaluated. The results show that residue-based metrics are sensitive to bearing wear. Next, the standard model is used in an in-depth investigation of shaft crack detection. When a shaft crack is present, the standard model is time-varying in both the fixed and moving coordinate systems. Therefore, this analysis is also used to evaluate performing EMA on non-modal data. In addition to continuing the evaluation of various xiv damage metrics, the shaft crack study also investigates the effects of noise and coordinate system choice (fixed or moving) on shaft crack detection. Crack detection through EMA processing of noisy, non-modal data is found to be feasible. The eigenvalue-based damage metrics show promise. Finally, the standard model is used in a dual-defect study. The system is configured with both a shaft crack and a worn bearing. One defect is held constant while the magnitude of the other is increased. The results suggest that AMI is usable for defect detection of rotating machinery in the presence of multiple system defects, even though the response data is not that of a time-invariant system. The relative merits of both input data types, the FRF and the dFRF, are evaluated in each study.
80

An Investigation On The Application Of Operational Modal Analysis

Buke, Fatih 01 September 2006 (has links) (PDF)
Modal parameter identification of a structure is done through modal testing and modal analysis using various system identification methods. These methods employ linear input-output relationships to extract the modes of a structure. There are cases where laboratory testing of a structure is not possible or information about the structure under operating conditions is seeked. A set of techniques called Operational Modal Analysis have been developed for modal parameter identification in operating conditions of a structure. These techniques use only response measurements to extract the modes. The aim of this study is to investigate the applicability and use of three selected time-domain methods adapted to operational modal analysis. The algorithms are programmed in Matlab&copy / environment, and various cases are evaluated using computer simulations for each method. Two of the selected methods are evaluated on a laboratory scale test setup.

Page generated in 0.0452 seconds