• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques contributions à l'estimation de grandes matrices de précision / Some contributions to large precision matrix estimation

Balmand, Samuel 27 June 2016 (has links)
Sous l'hypothèse gaussienne, la relation entre indépendance conditionnelle et parcimonie permet de justifier la construction d'estimateurs de l'inverse de la matrice de covariance -- également appelée matrice de précision -- à partir d'approches régularisées. Cette thèse, motivée à l'origine par la problématique de classification d'images, vise à développer une méthode d'estimation de la matrice de précision en grande dimension, lorsque le nombre $n$ d'observations est petit devant la dimension $p$ du modèle. Notre approche repose essentiellement sur les liens qu'entretiennent la matrice de précision et le modèle de régression linéaire. Elle consiste à estimer la matrice de précision en deux temps. Les éléments non diagonaux sont tout d'abord estimés en considérant $p$ problèmes de minimisation du type racine carrée des moindres carrés pénalisés par la norme $ell_1$.Les éléments diagonaux sont ensuite obtenus à partir du résultat de l'étape précédente, par analyse résiduelle ou maximum de vraisemblance. Nous comparons ces différents estimateurs des termes diagonaux en fonction de leur risque d'estimation. De plus, nous proposons un nouvel estimateur, conçu de sorte à tenir compte de la possible contamination des données par des {em outliers}, grâce à l'ajout d'un terme de régularisation en norme mixte $ell_2/ell_1$. L'analyse non-asymptotique de la convergence de notre estimateur souligne la pertinence de notre méthode / Under the Gaussian assumption, the relationship between conditional independence and sparsity allows to justify the construction of estimators of the inverse of the covariance matrix -- also called precision matrix -- from regularized approaches. This thesis, originally motivated by the problem of image classification, aims at developing a method to estimate the precision matrix in high dimension, that is when the sample size $n$ is small compared to the dimension $p$ of the model. Our approach relies basically on the connection of the precision matrix to the linear regression model. It consists of estimating the precision matrix in two steps. The off-diagonal elements are first estimated by solving $p$ minimization problems of the type $ell_1$-penalized square-root of least-squares. The diagonal entries are then obtained from the result of the previous step, by residual analysis of likelihood maximization. This various estimators of the diagonal entries are compared in terms of estimation risk. Moreover, we propose a new estimator, designed to consider the possible contamination of data by outliers, thanks to the addition of a $ell_2/ell_1$ mixed norm regularization term. The nonasymptotic analysis of the consistency of our estimator points out the relevance of our method
2

Modèles de substitution spatio-temporels et multifidélité : Application à l'ingénierie thermique / Spatio-temporal and multifidelity surrogate models : Application in thermal engineering

De lozzo, Matthias 03 December 2013 (has links)
Cette thèse porte sur la construction de modèles de substitution en régimes transitoire et permanent pour la simulation thermique, en présence de peu d'observations et de plusieurs sorties.Nous proposons dans un premier temps une construction robuste de perceptron multicouche bouclé afin d'approcher une dynamique spatio-temporelle. Ce modèle de substitution s'obtient par une moyennisation de réseaux de neurones issus d'une procédure de validation croisée, dont le partitionnement des observations associé permet d'ajuster les paramètres de chacun de ces modèles sur une base de test sans perte d'information. De plus, la construction d'un tel perceptron bouclé peut être distribuée selon ses sorties. Cette construction est appliquée à la modélisation de l'évolution temporelle de la température en différents points d'une armoire aéronautique.Nous proposons dans un deuxième temps une agrégation de modèles par processus gaussien dans un cadre multifidélité où nous disposons d'un modèle d'observation haute-fidélité complété par plusieurs modèles d'observation de fidélités moindres et non comparables. Une attention particulière est portée sur la spécification des tendances et coefficients d'ajustement présents dans ces modèles. Les différents krigeages et co-krigeages sont assemblés selon une partition ou un mélange pondéré en se basant sur une mesure de robustesse aux points du plan d'expériences les plus fiables. Cette approche est employée pour modéliser la température en différents points de l'armoire en régime permanent.Nous proposons dans un dernier temps un critère pénalisé pour le problème de la régression hétéroscédastique. Cet outil est développé dans le cadre des estimateurs par projection et appliqué au cas particulier des ondelettes de Haar. Nous accompagnons ces résultats théoriques de résultats numériques pour un problème tenant compte de différentes spécifications du bruit et de possibles dépendances dans les observations. / This PhD thesis deals with the construction of surrogate models in transient and steady states in the context of thermal simulation, with a few observations and many outputs.First, we design a robust construction of recurrent multilayer perceptron so as to approach a spatio-temporal dynamic. We use an average of neural networks resulting from a cross-validation procedure, whose associated data splitting allows to adjust the parameters of these models thanks to a test set without any information loss. Moreover, the construction of this perceptron can be distributed according to its outputs. This construction is applied to the modelling of the temporal evolution of the temperature at different points of an aeronautical equipment.Then, we proposed a mixture of Gaussian process models in a multifidelity framework where we have a high-fidelity observation model completed by many observation models with lower and no comparable fidelities. A particular attention is paid to the specifications of trends and adjustement coefficients present in these models. Different kriging and co-krigings models are put together according to a partition or a weighted aggregation based on a robustness measure associated to the most reliable design points. This approach is used in order to model the temperature at different points of the equipment in steady state.Finally, we propose a penalized criterion for the problem of heteroscedastic regression. This tool is build in the case of projection estimators and applied with the Haar wavelet. We also give some numerical results for different noise specifications and possible dependencies in the observations.

Page generated in 0.0617 seconds