Spelling suggestions: "subject:"nondominant""
1 |
A Genetic Algorithm Approach for Technology CharacterizationGalvan, Edgar 2012 August 1900 (has links)
It is important for engineers to understand the capabilities and limitations of the technologies they consider for use in their systems. Several researchers have investigated approaches for modeling the capabilities of a technology with the aim of supporting the design process. In these works, the information about the physical form is typically abstracted away. However, the efficient generation of an accurate model of technical capabilities remains a challenge. Pareto frontier based methods are often used but yield results that are of limited use for subsequent decision making and analysis. Models based on parameterized Pareto frontiers—termed Technology Characterization Models (TCMs)—are much more reusable and composable. However, there exists no efficient technique for modeling the parameterized Pareto frontier. The contribution of this thesis is a new algorithm for modeling the parameterized Pareto frontier to be used as a model of the characteristics of a technology. The novelty of the algorithm lies in a new concept termed predicted dominance. The proposed algorithm uses fundamental concepts from multi-objective optimization and machine learning to generate a model of the technology frontier.
|
2 |
Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs / Discrete representations of the nondominated set for multi-objective optimization problemsJamain, Florian 27 June 2014 (has links)
Le but de cette thèse est de proposer des méthodes générales afin de contourner l’intractabilité de problèmes d’optimisation multi-objectifs.Dans un premier temps, nous essayons d’apprécier la portée de cette intractabilité en déterminant une borne supérieure, facilement calculable, sur le nombre de points non dominés, connaissant le nombre de valeurs prises par chaque critère.Nous nous attachons ensuite à produire des représentations discrètes et tractables de l’ensemble des points non dominés de toute instance de problèmes d’optimisation multi-objectifs. Ces représentations doivent satisfaire des conditions de couverture, i.e. fournir une bonne approximation, de cardinalité, i.e. ne pas contenir trop de points, et si possible de stabilité, i.e. ne pas contenir de redondances. En s’inspirant de travaux visant à produire des ensembles ε-Pareto de petite taille, nous proposons tout d’abord une extension directe de ces travaux, puis nous axons notre recherche sur des ensembles ε-Pareto satisfaisant une condition supplémentaire de stabilité. Formellement, nous considérons des ensembles ε-Pareto particuliers, appelés (ε, ε′)-noyaux, qui satisfont une propriété de stabilité liée à ε′. Nous établissons des résultats généraux sur les (ε, ε′)-noyaux puis nous proposons des algorithmes polynomiaux qui produisent des (ε, ε′)-noyaux de petite taille pour le cas bi-objectif et nous donnons des résultats négatifs pour plus de deux objectifs. / The goal of this thesis is to propose new general methods to get around the intractability of multi-objective optimization problems.First, we try to give some insight on this intractability by determining an, easily computable, upper bound on the number of nondominated points, knowing the number of values taken on each criterion. Then, we are interested in producingsome discrete and tractable representations of the set of nondominated points for each instance of multi-objective optimization problems. These representations must satisfy some conditions of coverage, i.e. providing a good approximation, cardinality, i.e. it does not contain too many points, and if possible spacing, i.e. it does not include any redundancies. Starting from works aiming to produce ε-Pareto sets of small size, we first propose a direct extension of these works then we focus our research on ε-Pareto sets satisfying an additional condition of stability. Formally, we consider special ε-Pareto sets, called (ε, ε′)-kernels, which satisfy a property of stability related to ε′. We give some general results on (ε, ε′)-kernels and propose some polynomial time algorithms that produce small (ε, ε′)-kernels for the bicriteria case and we give some negative results for the tricriteria case and beyond.
|
3 |
Converging Preferred Regions In Multi-objective Combinatorial Optimization ProblemsLokman, Banu 01 July 2011 (has links) (PDF)
Finding the true nondominated points is typically hard for Multi-objective
Combinatorial Optimization (MOCO) problems. Furthermore, it is not practical to
generate all of them since the number of nondominated points may grow
exponentially as the problem size increases. In this thesis, we develop an exact
algorithm to find all nondominated points in a specified region. We combine this
exact algorithm with a heuristic algorithm that approximates the possible locations of
the nondominated points. Interacting with a decision maker (DM), the heuristic
algorithm first approximately identifies the region that is of interest to the DM. Then,
the exact algorithm is employed to generate all true nondominated points in this
region. We conduct experiments on Multi-objective Assignment Problems (MOAP),
Multi-objective Knapsack Problems (MOKP) and Multi-objective Shortest Path
(MOSP) Problems / and the algorithms work well.
Finding the worst possible value for each criterion among the set of efficient
solutions has important uses in multi-criteria problems since the proper scaling of
each criterion is required by many approaches. Such points are called nadir points.
v
It is not straightforward to find the nadir points, especially for large problems with
more than two criteria. We develop an exact algorithm to find the nadir values for
multi-objective integer programming problems. We also find bounds with
performance guarantees. We demonstrate that our algorithms work well in our
experiments on MOAP, MOKP and MOSP problems.
Assuming that the DM' / s preferences are consistent with a quasiconcave value
function, we develop an interactive exact algorithm to solve MIP problems. Based on
the convex cones derived from pairwise comparisons of the DM, we generate
constraints to prevent points in the implied inferior regions. We guarantee finding the
most preferred point and our computational experiments on MOAP, MOKP and
MOSP problems show that a reasonable number of pairwise comparisons are
required.
|
Page generated in 0.0588 seconds