• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Feedback Equalization of Digital Signals Transmitted Over Dispersive Channels

Taylor, Desmond Patrick 05 1900 (has links)
<p> This thesis deals with the problem of digital communication over noisy dispersive channels. The dispersion causes the overlapping of successive received pulses thus creating intersymbol interference which severely limits the performance of conventional receivers designed to combat only additive interference or noise.</p> <p> In this thesis Bayes estimation theory has been applied to obtain a new, optimum, unrealizable receiver structure for the improved reception of noisy, dispersed, pulse amplitude-modulated (PAM) signals. By making certain approximations, a realization of this structure, known as the estimate feedback receiver or equalizer, is obtained. It consists of the combination of a matched filter and a nonlinear, recursive equalizer having, in the case of binary signals, a hyperbolic tangent nonlinearity in the feedback path. The well known decision feedback equalizer is shown to be a small noise limiting case of the estimate feedback equalizer. A saturating limiter is also considered as an approximation to the hyperbolic tangent nonlinearity.</p> <p> A new adaptive algorithm for the iterative adjustment of the estimate feedback equalizer is derived. It incorporates an extrapolation process which has the purposes of accelerating convergence of the equalizer's parameters to their optimum values and of maintaining the equalizer's frame of reference. It is constrained so that the equalizers parameters always move toward their optimum values.</p> <p> Computer simulations are used to demonstrate the properties of the adaptive estimate feedback equalizer and to compare them to those of presently known equalizers. When the estimate feedback equalizer is used, without a matched filter preceding it, to equalize phase distorted channels, its performance is seen to be superior to that of existing equalizers. The performance of an equalizer using a saturating limiter in place of the optimum hyperbolic tangent nonlinearity is seen to be almost as good as that of the estimate feedback equalizer.</p> / Thesis / Doctor of Philosophy (PhD)
2

Hybrid Geometric Feedback Control of Three-Dimensional Bipedal Robotic Walkers with Knees and Feet

Sinnet, Ryan Wesley 2011 May 1900 (has links)
This thesis poses a feedback control method for obtaining humanlike bipedal walking on a human-inspired hybrid biped model. The end goal was to understand better the fundamental mechanisms that underlie bipedal walking in the hopes that this newfound understanding will facilitate better mechanical and control design for bipedal robots. Bipedal walking is hybrid in nature, characterized by periodic contact between a robot and the environment, i.e., the ground. Dynamic models derived from Lagrangians modeling mechanical systems govern the continuous dynamics while discrete dynamics were handed by an impact model using impulse-like forces and balancing angular momentum. This combination of continuous and discrete dynamics motivated the use of hybrid systems for modeling purposes. The framework of hybrid systems was used to model three-dimensional bipedal walking in a general setup for a robotic model with a hip, knees, and feet with the goal of obtaining stable walking. To achieve three-dimensional walking, functional Routhian reduction was used to decouple the sagittal and coronal dynamics. By doing so, it was possible to achieve walking in the two-dimensional sagittal plane on the three-dimensional model, restricted to operate in the sagittal plane. Imposing this restriction resulted in a reduced-order model, referred to as the sagittally-restricted model. Sagittal control in the form of controlled symmetries and additional control strategies was used to achieve stable walking on the sagittally-restricted model. Functional Routhian reduction was then applied to the full-order system. The sagittal control developed on the reduced-order model was used with reduction to achieve walking in three dimensions in simulation. The control schemes described resulted in walking which was remarkably anthropomorphic in nature. This observation is surprising given the simplistic nature of the controllers used. Moreover, the two-dimensional and three-dimensional dynamics were completely decoupled inasmuch as the dynamic models governing the sagittal motion were equivalent. Additionally, the reduction resulted in swaying in the lateral plane. This motion, which is generally present in human walking, was unplanned and was a side-effect of the decoupling process. Despite the approximate nature of the reduction, the motion was still almost completely decoupled with respect to the sagittal and coronal planes.
3

Design and Analysis of Cryptographic Pseudorandom Number/Sequence Generators with Applications in RFID

Mandal, Kalikinkar 15 August 2013 (has links)
This thesis is concerned with the design and analysis of strong de Bruijn sequences and span n sequences, and nonlinear feedback shift register (NLFSR) based pseudorandom number generators for radio frequency identification (RFID) tags. We study the generation of span n sequences using structured searching in which an NLFSR with a class of feedback functions is employed to find span n sequences. Some properties of the recurrence relation for the structured search are discovered. We use five classes of functions in this structured search, and present the number of span n sequences for 6 <= n <= 20. The linear span of a new span n sequence lies between near-optimal and optimal. According to our empirical studies, a span n sequence can be found in the structured search with a better probability of success. Newly found span n sequences can be used in the composited construction and in designing lightweight pseudorandom number generators. We first refine the composited construction based on a span n sequence for generating long de Bruijn sequences. A de Bruijn sequence produced by the composited construction is referred to as a composited de Bruijn sequence. The linear complexity of a composited de Bruijn sequence is determined. We analyze the feedback function of the composited construction from an approximation point of view for producing strong de Bruijn sequences. The cycle structure of an approximated feedback function and the linear complexity of a sequence produced by an approximated feedback function are determined. A few examples of strong de Bruijn sequences with the implementation issues of the feedback functions of an (n+16)-stage NLFSR are presented. We propose a new lightweight pseudorandom number generator family, named Warbler family based on NLFSRs for smart devices. Warbler family is comprised of a combination of modified de Bruijn blocks (CMDB) and a nonlinear feedback Welch-Gong (WG) generator. We derive the randomness properties such as period and linear complexity of an output sequence produced by the Warbler family. Two instances, Warbler-I and Warbler-II, of the Warbler family are proposed for passive RFID tags. The CMDBs of both Warbler-I and Warbler-II contain span n sequences that are produced by the structured search. We analyze the security properties of Warbler-I and Warbler-II by considering the statistical tests and several cryptanalytic attacks. Hardware implementations of both instances in VHDL show that Warbler-I and Warbler-II require 46 slices and 58 slices, respectively. Warbler-I can be used to generate 16-bit random numbers in the tag identification protocol of the EPC Class 1 Generation 2 standard, and Warbler-II can be employed as a random number generator in the tag identification as well as an authentication protocol for RFID systems.
4

Developing Active Artificial Hair Cell Sensors Inspired by the Cochlear Amplifier

Davaria, Sheyda 26 January 2021 (has links)
The mammalian cochlea has been the inspiration to develope contemporary cochlear implants and active dynamic sensors that operate in the sensor's resonance region and possess favorable nonlinear characteristics. In the present work, multi-channel and self-sensing active artificial hair cells (AHCs) made of piezoelectric cantilevers and controlled by a cubic damping feedback controller are developed numerically and experimentally. These novel AHCs function near a Hopf bifurcation and amplify or compress the output by a one-third power-law relationship with the input, analogous to the mammalian cochlear amplifier. The multi-channel AHCs have extended frequency bandwidth to sense over multiple resonant frequencies, unlike conventional single-channel AHCs. Therefore, the adoption of these AHCs reduces the number of required sensors to cover the desired bandwidth of interest in an array format. Furthermore, a novel self-sensing active AHC is created in this study using quadmorph beams for future cochlear implants or sensor design applications. The self-sensing scheme allows miniaturization of the system, embedding AHCs in a limited space, and fabrication of AHC arrays by omitting external sensors from the system for practical implementation. Preliminary research on the extension of this research to MEMS AHCs and arrays of AHCs is also presented. The active AHCs can lead to transformative improvements in the dynamic range, sharpness of the response, and threshold of sound detection in cochlear implants to aid individuals with sensorineural hearing loss. Additionally, they can enhance the dynamic properties of sensors such as fluid flow sensors, microphones, and vibration sensors for various applications. / Doctor of Philosophy / In the mammalian auditory system, the acoustic wave that enters the ear canal is transmitted to the cochlea of the inner ear where it is decomposed into its frequency components. The cochlea then amplifies faint sounds and compresses high-level signals and as these processes stop due to damage, severe hearing loss occurs. Therefore, the present work is focused on developing artificial hair cells (AHCs) that can accurately replicate cochlea's behavior and aid the creation of prostheses for hearing restoration. In this work, the AHC is a beam with piezoelectric layers that is integrated with a control system designed to apply the cochlea-like amplification/compression on the beam. Experimental and simulation results show that the AHC is able to amplify or compress the output based on its input level similar to the mammalian cochlea. In contrast to previous designs of AHCs where each AHC could sense a single frequency, the system developed in this work possesses multiple sensing channels to increase the frequency range of the AHC. Furthermore, the development of a novel self-sensing scheme allows the omission of the external sensor that was required for the AHC operation in previous devices. This advancement in the self-sensing AHC design paves the way for creating fully implantable AHCs to replace the damaged parts of the cochlea. These multi-channel self-sensing AHCs have the potential to be used in the creation of cochlear implants, or sensors such as accelerometers, microphones, and hydrophones with improved dynamic properties. AHCs with different lengths, i.e. different sensing frequencies, can be mounted in an array format to cover the speech frequency range for speech recognition in individuals with hearing loss.
5

Regulated Feedback Networks with Degradation

Addai, Obeng A. 05 October 2015 (has links)
No description available.
6

Methods for improving crane performance and ease of use

Peng, Chen-Chih 13 January 2014 (has links)
Cranes are widely used in material-handling and transportation applications, e.g. in shipyards, construction sites, and warehouses. As they are critical to the economic vitality of modern-day industries, improving crane performance and ease of use are important contributors to industrial productivity, low production costs, and workplace safety. In a typical crane operation, a payload is lifted, moved to its destination, and then lowered into place. This dissertation aims to improve crane performance and reduce task difficulty for the human operator in the movements mentioned above, namely: 1) Moving payloads laterally in the horizontal plane, 2) Lifting payloads off the ground, and 3) Lowering or laying down payloads on the ground. The design of a novel and intuitive human-machine control interface is the focus for improving operations that involve moving payloads laterally. The interface allows operators to drive a crane by simply moving a hand-held device through the desired path. The position of the device, which is tracked by sensors, is used to generate command signals to drive the crane. This command is then input-shaped such that payload oscillations are greatly reduced, making it much easier for the operator to drive the crane. Several facets of this crane control method are examined, such as control structure and stability, usability contexts, modes of operation, and quantitative measures (by means of human operator studies) of performance improvements over standard crane control interfaces. Lifting up a payload can be difficult for the operator, if the hoist is not properly centered above the payload. In these potentially dangerous and costly ``off-centered" lifts, the payload may slide on the ground and/or oscillate in the air after it is hoisted. Newtonian and Coulomb friction models that focus on the stiction-sliding-separation contact dynamics are derived and experimentally verified to study off-centered lifts. Then, with the goal of aiding operators during lift operations, simple but practical, self-centering solutions are proposed and implemented. Laying down or lowering a payload to the ground can also be challenging for operators in certain situations. For example, laying down a long, slender payload from a vertical orientation in the air, to a horizontal position on a flat surface. If the operator does not properly coordinate the motions of the crane in the vertical and horizontal directions simultaneously, then the potential hazards that may occur during these operations include: 1) slipping of the pivot about which the payload rotates, leading to sudden and dangerous payload movements; and 2) excessive hoist cable angles that lead to ``side-pull" problems. Newtonian and Coulomb friction models are derived to describe this lay-down scenario. The forces and motions experienced by the payload are then used to determine the motion trajectories that the crane and payload should follow to execute a successful lay-down maneuver. Finally, a special chapter is included to address the oscillation control of systems that have on-off nonlinear actuators, such as cranes powered by relay-controlled circuits. Due to their simplicity, ruggedness, and long service life, this type of crane can be commonly found in older factories or in applications where precise motion control is not a strict requirement. However, controlling payload oscillations on this type of crane is challenging for two reasons: 1) Relays that can only be turned on or off allow for only limited control over the crane velocity; and 2) These cranes typically have nonlinear asymmetrical acceleration and deceleration properties. Methods are derived for determining the relay switch-times that move single-pendulum and double-pendulum payloads with low residual oscillations.
7

Modeling and formation controller design for multi-quadrotor systems with leader-follower configuration / Modélisation et conception de lois de commande pour le vol en formation de drones aériens avec une configuration leader-suiveur

Hou, Zhicheng 10 February 2016 (has links)
Cette thèse propose des solutions aux problématiques inhérentes au contrôle de formations aériennes de type leader­-suiveur pour des flottes de quadrirotors. Au regard des travaux existants, les stratégies qui sont proposés dans notre travail, considère que le(s) leader{s) a une interaction avec les suiveurs. En outre, les rôles de leader et de suiveur sont interchangeables lors de la formation. Dans un premier temps, la modélisation mathématique d'un seul quadrirotor et celle de la formation de quadrirotors est développée. Ensuite, le problème de suivi de trajectoire pour un seul quadrirotor est étudié. Au travers de l'analyse de 1, dynamique du système pour la conception d'une commande par platitude, il apparait que le suivi de trajectoire pour chaque quadrirotor équivaut à déterminer les sorties plates désirées. Un contrôleur pour système plats permettant l'asservissement des drones pour le suivi de trajectoire est donc proposé. Étant donné la propriété de double-boucle de la dynamique du quadrirotor en boucle fermée, un contrôleur d'attitude avec des grands gains est conçu, selon la théorie « singular perturbation system ». Puisque la dynamique du quadrirotor en boucle fermée fonctionne sur deux échelles de temps, la dynamique de rotation (boundary-layer mode) est contrôlée sur l'échelle de temps la plus rapide. La conception du contrôleur de formation dépend seulement de la dynamique de translation (modèle réduit dans une échelle de temps lente). Ce résultat a simplifié la conception du contrôleur de formation, de telle sorte que le modèle réduit du quadrirotor est utilisé au lieu du modèle complet. Étant donné que le modèle réduit du quadrirotor a une caractéristique de double-intégrateur, un algorithme de consensus pour des systèmes caractérisés par de multiple double-intégrateurs est proposé. Pour traiter le problème de la formation leader-suiveur, une matrice d'interaction est initialement proposée basée sur la matrice de Laplacienne. Nous montrons que la condition de convergence et la vitesse de convergence de l'erreur de formation dépendent de la plus petite valeur propre de la matrice d'interaction. Trois stratégies de contrôle de la formation avec une topologie fixe sont ensuite proposées. Le contrôle de formation par platitude est proposé pour obtenir une formation agressive, tandis que les dérivées de grands ordres de la trajectoire désirée pour chaque UAV sont estimées en utilisant un observateur; la méthode Lyapunov redesign est implémentée pour traiter les non-linéarités de la dynamique de la translation des quadrotors; une loi de commande bornée par l'utilisation, entre autre, de la fonction tangente hyperbolique est développée avec un feedback composite non linéaire, afin d'améliorer les performances de la formation. De plus, une commande de commutation saturée de la formation est étudiée, car la topologie de la formation est variable. La stabilité du système est obtenue grâce aux théories “convex hull » et « common Lyapunov function ». Cette stratégie de commande de commutation permet le changement des leaders dans la formation. Inspirée par certains travaux existants, tels que le contrôle de la formation avec des voisins anonymes, nous proposons, finalement, une loi de commande avec des voisins pondérés, qui montre une meilleure robustesse que le contrôle avec des voisins anonymes. Les résultats de simulation obtenus avec Matlab illustrent premièrement nos stratégies de contrôle que nous proposons De plus, en utilisant le langage de programmation C ++, nos stratégies sont mises en œuvre dans un framework de simulation et d'expérimentation développé au laboratoire Heudiasyc. Grâce aux nombreux tests variés que nous avons réalisés en simulation et en temps-réel, l'efficacité et les avantages de nos stratégies de contrôle de la formation proposées sont présentés. / In this thesis, we address a leader-follower (L-F) formation control problem for multiple UAVs, especially quadrotors. Different from existing works, the strategies, which are proposed in our work, consider that the leader(s) have interaction with the followers. Additionally, the leader(s) are changeable during the formation. First, the mathematical modeling of a single quadrotor and of the formation of quadrotors is developed. The trajectory tracking problem for a single quadrotor is investigated. Through the analysis of the flatness of the quadrotor dynamical model, the desired trajectory for each quadrotor is transferred to the design of the desired at outputs. A flatness-based trajectory tracking controller is, then, proposed. Considering the double-loop property of the closed-loop quadrotor dynamics, a high-gain attitude controller is designed, according to the singular perturbation system theory. Since the closed-loop quadrotor dynamics performs in two time scales, the rotational dynamics (boundary-layer model) is controlled in a fast time scale. The formation controller design is then only considered for the translational dynamics: reduced model in a slow time scale. This result has simplified the formation controller design such that the reduced model of the quadrotor is considered instead of the complete model. Since the reduced model of the quadrotor has a double-integrator characteristic, consensus algorithm for multiple double-integrator systems is proposed. Dealing with the leader-follower formation problem, an interaction matrix is originally proposed based on the Laplacian matrix. We prove that the convergence condition and convergence speed of the formation error are in terms of the smallest eigenvalue of the interaction matrix. Three formation control strategies with fixed formation topology are then proposed. The flatness-based formation control is proposed to deal with the aggressive formation problem, while the high-order derivatives of the desired trajectory for each UAV are estimated by using an observer; the Lyapunov redesign is developed to deal with the nonlinearities of the translational dynamics of the quadrotors; the hyperbolic tangent-based bounded control with composite nonlinear feedback is developed in order to improve the performance of the formation. In an additional way, a saturated switching control of the formation is investigated, where the formation topology is switching. The stability of the system is obtained by introducing the convex hull theory and the common Lyapunov function. This switching control strategy permits the change of the leaders in the formation. Inspired by some existing works, such as the anonymous neighbor-based formation control, we finally propose a weighted neighbor-based control, which shows better robustness than the anonymous neighbor-based control. Simulation results using Matlab primarily illustrate our proposed formation control strategies. Furthermore, using C++ programming, our strategies are implemented on the simulator-experiment framework, developed at Heudiasyc laboratory. Through a variety of tests on the simulator and real-time experiments, the efficiency and the advantages of our proposed formation control strategies are shown. Finally, a vision-based inter-distance detection system is developed. This system is composed by an on-board camera, infrared LEDs and an infrared filter. The idea is to detect the UAVs and calculate the inter-distance by calculating the area of the special LEDs patterns. This algorithm is validated on a PC, with a webcam and primarily implemented on a real quadrotor.

Page generated in 0.045 seconds