• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical And Numerical Solutions To Rotating Orthotropic Disk Problems

Kaya, Yasemin 01 July 2007 (has links) (PDF)
Analytical and numerical models are developed to investigate the effect of orthotropy on the stress distribution in variable thickness solid and annular rotating disks. The plastic treatment is based on Hill&rsquo / s quadratic yield criterion, total deformation theory, and Swift&rsquo / s hardening law. The elastic-plastic stress distributions, residual stresses and radial displacement distributions are obtained after having analysed the cases of rotating solid disk, annular disk with rigid inclusion, annular disk subjected to either internal or external pressure. Thermal loading is also considered for the annular disk with rigid inclusion. Effects of different values of elastic and plastic orthotropy parameters are investigated. It is observed that the elastic orthotropy significantly affects the residual stresses in disks. The most remarkable effect of the plastic orthotropy is observed on the disk with rigid inclusion.
2

Effect of Forming Process on the Deformational Behaviour of Steel Pipes

Tanbakuei Kashani, Majid January 2017 (has links)
Buried pipeline networks play a vital role in the transportation of oil and natural gas from centers of production to centers of consumption. A common manufacturing technique for such pipes is the UOE process, where a flat steel plate is first formed into a U shape, then into an O shape, welded at the seam, and mechanically expanded before being shipped on site. The UOE forming process deforms the pipe material plastically and induces residual strains in the pipe. Such pipes are commonly buried on side and then are pressurized under the high head of the fluids they convey which induce hoop stresses as high as 80% of the pipe yield strength. When buried pipelines cross the regions of discontinuous permafrost, they undergo differential frost heaving, inducing significant bending deformations, which potentially induce local buckling in the pipe wall. To control local buckling, design standards impose threshold limits on buckling strains. Such threshold values are primarily based on costly full-scale experimental results. Past nonlinear finite element analysis attempts aiming at determining the threshold buckling strains have neglected the presence of residual stresses induced by the UOE forming and were thus found to grossly overestimate the buckling strains compared to those based experiments. Within the above context, the present study focuses on developing a numerical technique to predict the residual stresses induced during UOE forming, and incorporating the induced residual stresses in 3D nonlinear FEA modeling to more reliably predict buckling strain limits. Comparisons with conventional analysis techniques that omit residual stresses reveal the importance of incorporating residual stresses induced in forming when quantifying buckling strains.

Page generated in 0.1077 seconds