Spelling suggestions: "subject:"nonparametric."" "subject:"nonparametrically.""
1 |
Three Essays in Micro-EconometricsYang, Tao January 2015 (has links)
Thesis advisor: Arthur Lewbel / My dissertation is composed of three chapters. The first chapter is on the asymptotic trimming and rate adaptive inference for heavy-tail distributed estimators. The second chapter is about the identification of the Average Treatment Effect for a two threshold model. The last chapter is on the identification of the parameters of interest in a binary choice model with interactive effects. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Economics.
|
2 |
Scalable Bayesian regression utilising marginal informationGray-Davies, Tristan Daniel January 2017 (has links)
This thesis explores approaches to regression that utilise the treatment of covariates as random variables. The distribution of covariates, along with the conditional regression model Y | X, define the joint model over (Y,X), and in particular, the marginal distribution of the response Y. This marginal distribution provides a vehicle for the incorporation of prior information, as well as external, marginal data. The marginal distribution of the response provides a means of parameterisation that can yield scalable inference, simple prior elicitation, and, in the case of survival analysis, the complete treatment of truncated data. In many cases, this information can be utilised without need to specify a model for X. Chapter 2 considers the application of Bayesian linear regression where large marginal datasets are available, but the collection of response and covariate data together is limited to a small dataset. These marginal datasets can be used to estimate the marginal means and variances of Y and X, which impose two constraints on the parameters of the linear regression model. We define a joint prior over covariate effects and the conditional variance σ<sup>2</sup> via a parameter transformation, which allows us to guarantee these marginal constraints are met. This provides a computationally efficient means of incorporating marginal information, useful when incorporation via the imputation of missing values may be implausible. The resulting prior and posterior have rich dependence structures that have a natural 'analysis of variance' interpretation, due to the constraint on the total marginal variance of Y. The concept of 'marginal coherence' is introduced, whereby competing models place the same prior on the marginal mean and variance of the response. Our marginally constrained prior can be extended by placing priors on the marginal variances, in order to perform variable selection in a marginally coherent fashion. Chapter 3 constructs a Bayesian nonparametric regression model parameterised in terms of FY , the marginal distribution of the response. This naturally allows the incorporation of marginal data, and provides a natural means of specifying a prior distribution for a regression model. The construction is such that the distribution of the ordering of the response, given covariates, takes the form of the Plackett-Luce model for ranks. This facilitates a natural composite likelihood approximation that decomposes the likelihood into a term for the marginal response data, and a term for the probability of the observed ranking. This can be viewed as a extension to the partial likelihood for proportional hazards models. This convenient form leads to simple approximate posterior inference, which circumvents the need to perform MCMC, allowing scalability to large datasets. We apply the model to a US Census dataset with over 1,300,000 data points and more than 100 covariates, where the nonparametric prior is able to capture the highly non-standard distribution of incomes. Chapter 4 explores the analysis of randomised clinical trial (RCT) data for subgroup analysis, where interest lies in the optimal allocation of treatment D(X), based on covariates. Standard analyses build a conditional model Y | X,T for the response, given treatment and covariates, which can be used to deduce the optimal treatment rule. We show that the treatment of covariates as random facilitates direct testing of a treatment rule, without the need to specify a conditional model. This provides a robust, efficient, and easy-to-use methodology for testing treatment rules. This nonparametric testing approach is used as a splitting criteria in a random-forest methodology for the exploratory analysis of subgroups. The model introduced in Chapter 3 is applied in the context of subgroup analysis, providing a Bayesian nonparametric analogue to this approach: where inference is based only on the order of the data, circumventing the requirement to specify a full data-generating model. Both approaches to subgroup analysis are applied to data from an AIDS Clinical Trial.
|
3 |
Bayesian Nonparametrics for BiophysicsMeysam Tavakoli (8767965) 28 April 2020 (has links)
<p>The main goal of data analysis is to summarize huge amount of data (as our observation) with a few numbers that come up us with some sort of intuition into the process that generated the data. Regardless of the method we use to analyze the data, the process of analysis includes (1) create the mathematical formulation for the problem, (2) data collection, (3) create a probability model for the data, (4) estimate the parameters of the model, and (5) summarize the results in a proper way-a process that is called ”statistical inference”.<br></p><p>Recently it has been suggested that using the concept of Bayesian approach and more specifically Bayesian nonparametrics (BNPs) is showed to have a deep influence in the area of data analysis [1], and in this field, they have just begun to be extracted [2–4]. However, to our best knowledge, there is no single resource yet avail-able that explain it, both its concepts, and implementation, as would be needed to bring the capacity of BNPs to relieve on data analysis and accelerate its unavoidable extensive acceptance.<br></p><p>Therefore, in this dissertation, we provide a description of the concepts and implementation of an important, and computational tool that extracts BNPs in this area specifically its application in the field of biophysics. Here, the goal is using BNPs to understand the rules of life (in vivo) at the scale at which life occurs (single molecule)from the fastest possible acquirable data (single photons).<br></p><p>In chapter 1, we introduce a brief introduction to Data Analysis in biophysics.Here, our overview is aimed for anyone, from student to established researcher, who plans to understand what can be accomplished with statistical methods to modeling and where the field of data analysis in biophysics is headed. For someone just getting started, we present a special on the logic, strengths and shortcomings of data analysis frameworks with a focus on very recent approaches.<br></p><p>In chapter 2, we provide an overview on data analysis in single molecule bio-physics. We discuss about data analysis tools and model selection problem and mainly Bayesian approach. We also discuss about BNPs and their distinctive characteristics that make them ideal mathematical tools in modeling of complex biomolecules as they offer meaningful and clear physical interpretation and let full posterior probabilities over molecular-level models to be deduced with minimum subjective choices.<br></p><p>In chapter 3, we work on spectroscopic approaches and fluorescence time traces.These traces are employed to report on dynamical features of biomolecules. The fundamental unit of information came from these time traces is the single photon.Individual photons have information from the biomolecule, from which they are emit-ted, to the detector on timescales as fast as microseconds. Therefore, from confocal microscope viewpoint it is theoretically feasible to monitor biomolecular dynamics at such timescales. In practice, however, signals are stochastic and in order to derive dynamical information through traditional means such as fluorescence correlation spectroscopy (FCS) and related methods fluorescence time trace signals are gathered and temporally auto-correlated over many minutes. So far, it has been unfeasible to analyze dynamical attributes of biomolecules on timescales near data acquisition as this requests that we estimate the biomolecule numbers emitting photons and their locations within the confocal volume. The mathematical structure of this problem causes that we leave the normal (”parametric”) Bayesian paradigm. Here, we utilize novel mathematical tools, BNPs, that allow us to extract in a principled fashion the same information normally concluded from FCS but from the direct analysis of significantly smaller datasets starting from individual single photon arrivals. Here, we specifically are looking for diffusion coefficient of the molecules. Diffusion coefficient allows molecules to find each other in a cell and at the cellular level, determination of the diffusion coefficient can provide us valuable insights about how molecules interact with their environment. We discuss the concepts of this method in assisting significantly reduce phototoxic damage on the sample and the ability to monitor the dynamics of biomolecules, even down to the single molecule level, at such timescales.<br></p><p>In chapter 4, we present a new approach to infer lifetime. In general, fluorescenceLifetime Imaging (FLIM) is an approach which provides us information on the numberof species and their associated lifetimes. Current lifetime data analysis methods relyon either time correlated single photon counting (TCSPC) or phasor analysis. These methods require large numbers of photons to converge to the appropriate lifetimes and do not determine how many species are responsible for those lifetimes. Here, we propose a new method to analyze lifetime data based on BNPs that precisely takes into account several experimental complexities. Using BNPs, we can not only identify the most probable number of species but also their lifetimes with at least an order magnitudes less data than competing methods (TCSPC or phasors). To evaluate our method, we test it with both simulated and experimental data for one, two, three and four species with both stationary and moving molecules. Also, we compare our species estimate and lifetime determination with both TCSPC and phasor analysis for different numbers of photons used in the analysis.<br></p><p>In conclusion, the basis of every spectroscopic method is the detection of photons.Photon arrivals encode complex dynamical and chemical information and methods to analyze such arrivals have the capability to reveal dynamical and chemical processes on fast timescales. Here, we turn our attention to fluorescence lifetime imaging and single spot fluorescence confocal microscopy where individual photon arrivals report on dynamics and chemistry down to the single molecule level. The reason this could not previously be achieved is because of the uncertainty in the number of chemical species and numbers of molecules contributing for the signal (i.e., responsible for contributing photons). That is, to learn dynamical or kinetic parameters (like diffusion coefficients or lifetime) we need to be able to interpret which photon is reporting on what process. For this reason, we abandon the parametric Bayesian paradigm and use the nonparametric paradigm that allows us to flexibly explore and learn numbers of molecules and chemical reaction space. We demonstrate the power of BNPs over traditional methods in single spot confocal and FLIM analysis in fluorescence lifetime imaging.<br></p>
|
4 |
A comparison of type I error and power of the aligned rank method using means and medians for alignmentYates, Heath Landon January 1900 (has links)
Master of Science / Department of Statistics / James J. Higgins / A simulation study was done to compare the Type I error and power of standard analysis
of variance (ANOVA), the aligned rank transform procedure (ART), and the aligned rank
transform procedure where alignment is done using medians (ART + Median). The methods
were compared in the context of a balanced two-way factorial design with interaction when
errors have a normal distribution and outliers are present in the data and when errors have the
Cauchy distribution. The simulation results suggest that the nonparametric methods are more
outlier-resistant and valid when errors have heavy tails in comparison to ANOVA. The ART +
Median method appears to provide greater resistance to outliers and is less affected by heavy-tailed
distributions than the ART method and ANOVA.
|
5 |
Infinite-word topic models for digital mediaWaters, Austin Severn 02 July 2014 (has links)
Digital media collections hold an unprecedented source of knowledge and data about the world. Yet, even at current scales, the data exceeds by many orders of magnitude the amount a single user could browse through in an entire lifetime. Making use of such data requires computational tools that can index, search over, and organize media documents in ways that are meaningful to human users, based on the meaning of their content. This dissertation develops an automated approach to analyzing digital media content based on topic models. Its primary contribution, the Infinite-Word Topic Model (IWTM), helps extend topic modeling to digital media domains by removing model assumptions that do not make sense for them -- in particular, the assumption that documents are composed of discrete, mutually-exclusive words from a fixed-size vocabulary. While conventional topic models like Latent Dirichlet Allocation (LDA) require that media documents be converted into bags of words, IWTM incorporates clustering into its probabilistic model and treats the vocabulary size as a random quantity to be inferred based on the data. Among its other benefits, IWTM achieves better performance than LDA while automating the selection of the vocabulary size. This dissertation contributes fast, scalable variational inference methods for IWTM that allow the model to be applied to large datasets. Furthermore, it introduces a new method, Incremental Variational Inference (IVI), for training IWTM and other Bayesian non-parametric models efficiently on growing datasets. IVI allows such models to grow in complexity as the dataset grows, as their priors state that they should. Finally, building on IVI, an active learning method for topic models is developed that intelligently samples new data, resulting in models that train faster, achieve higher performance, and use smaller amounts of labeled data. / text
|
6 |
Optimization models and methods under nonstationary uncertaintyBelyi, Dmitriy 07 December 2010 (has links)
This research focuses on finding the optimal maintenance policy for an item with varying failure behavior. We analyze several types of item failure rates and develop
methods to solve for optimal maintenance schedules. We also illustrate nonparametric modeling techniques for failure rates, and utilize these models in the optimization methods. The general problem falls under the umbrella of stochastic optimization
under uncertainty. / text
|
7 |
Pricing, hedging and testing risky assets in financial marketsRen, Yu 19 June 2008 (has links)
State price density (SPD) and stochastic discount factor (SDF) are important elements
in asset pricing. In this thesis, I first propose to use projection pursuit regression
(PPR) and local polynomial regression (LPR) to estimate the SPD of interest rates nonparametrically.
By using a similar approach, I also estimate the delta values in the interest rate options and discusses how to delta-hedge these options. Unlike SPD measured in a risk-neutral economy, SDF is implied by an asset pricing model. It displays which prices are reasonable given the returns in the current period. Hansen and Jagannathan (1997) develop the Hansen-Jagannathan distance (HJ-distance) to measure pricing errors produced by SDF. While the HJ-distance has several desirable properties, Ahn and Gadarowski (2004) find that the specification test based on the HJ-distance overrejects correct models too severely in commonly used sample size to provide a valid test. This thesis proposes to improve the finite sample properties of the HJ-distance test by applying the shrinkage method (Ledoit and Wolf, 2003) to compute its weighting matrix. / Thesis (Ph.D, Economics) -- Queen's University, 2008-06-19 00:00:55.996
|
8 |
Statistical Models for Next Generation Sequencing DataWang, Yiyi 03 October 2013 (has links)
Three statistical models are developed to address problems in Next-Generation Sequencing data. The first two models are designed for RNA-Seq data and the third is designed for ChIP-Seq data. The first of the RNA-Seq models uses a Bayesian non- parametric model to detect genes that are differentially expressed across treatments. A negative binomial sampling distribution is used for each gene’s read count such that each gene may have its own parameters. Despite the consequent large number of parameters, parsimony is imposed by a clustering inherent in the Bayesian nonparametric framework. A Bayesian discovery procedure is adopted to calculate the probability that each gene is differentially expressed. A simulation study and real data analysis show this method will perform at least as well as existing leading methods in some cases. The second RNA-Seq model shares the framework of the first model, but replaces the usual random partition prior from the Dirichlet process by a random partition prior indexed by distances from Gene Ontology (GO). The use of the external biological information yields improvements in statistical power over the original Bayesian discovery procedure. The third model addresses the problem of identifying protein binding sites for ChIP-Seq data. An exact test via a stochastic approximation is used to test the hypothesis that the treatment effect is independent of the sequence count intensity effect. The sliding window procedure for ChIP-Seq data is followed. The p-value and the adjusted false discovery rate are calculated for each window. For the sites identified as peak regions, three candidate models are proposed for characterizing the bimodality of the ChIP-Seq data, and the stochastic approximation in Monte Carlo (SAMC) method is used for selecting the best of the three. Real data analysis shows that this method produces comparable results as other existing methods and is advantageous in identifying bimodality of the data.
|
9 |
Use and development of matrix factorisation techniques in the field of brain imagingPearce, Matthew Craig January 2018 (has links)
Matrix factorisation treats observations as linear combinations of basis vectors together with, possibly, additive noise. Notable techniques in this family are Principal Components Analysis and Independent Components Analysis. Applied to brain images, matrix factorisation provides insight into the spatial and temporal structure of data. We improve on current practice with methods that unify different stages of analysis simultaneously for all subjects in a dataset, including dimension estimation and reduction. This results in uncertainty information being carried coherently through the analysis. A computationally efficient approach to correlated multivariate normal distributions is set out. This enables spatial smoothing during the inference of basis vectors, to a level determined by the data. Applied to neuroimaging, this reduces the need for blurring of the data during preprocessing. Orthogonality constraints on the basis are relaxed, allowing for overlapping ‘networks’ of activity. We consider a nonparametric matrix factorisation model inferred using Markov Chain Monte Carlo (MCMC). This approach incorporates dimensionality estimation into the infer- ence process. Novel parallelisation strategies for MCMC on repeated graphs are provided to expedite inference. In simulations, modelling correlation structure is seen to improve source separation where latent basis vectors are not orthogonal. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) project obtained fMRI data while subjects watched a short film, on 30 of whose recordings we demonstrate the approach. To conduct inference on larger datasets, we provide a fixed dimension Structured Matrix Factorisation (SMF) model, inferred through Variational Bayes (VB). By modelling the components as a mixture, more general distributions can be expressed. The VB approach scaled to 600 subjects from Cam-CAN, enabling a comparison to, and validation of, the main findings of an earlier analysis; notably that subjects’ responses to movie watching became less synchronised with age. We discuss differences in results obtained under the MCMC and VB inferred models.
|
10 |
Semantically Grounded Learning from Unstructured DemonstrationsNiekum, Scott D. 01 September 2013 (has links)
Robots exhibit flexible behavior largely in proportion to their degree of semantic knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert.
For this reason, learning from demonstration (LfD) has become a popular alternative to traditional robot programming methods, aiming to provide a natural mechanism for quickly teaching robots. By simply showing a robot how to perform a task, users can easily demonstrate new tasks as needed, without any special knowledge about the robot. Unfortunately, LfD often yields little semantic knowledge about the world, and thus lacks robust generalization capabilities, especially for complex, multi-step tasks.
To address this shortcoming of LfD, we present a series of algorithms that draw from recent advances in Bayesian nonparametric statistics and control theory to automatically detect and leverage repeated structure at multiple levels of abstraction in demonstration data. The discovery of repeated structure provides critical insights into task invariants, features of importance, high-level task structure, and appropriate skills for the task. This culminates in the discovery of semantically meaningful skills that are flexible and reusable, providing robust generalization and transfer in complex, multi-step robotic tasks. These algorithms are tested and evaluated using a PR2 mobile manipulator, showing success on several complex real-world tasks, such as furniture assembly.
|
Page generated in 0.0832 seconds