• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Orbifolds of Nonpositive Curvature and their Loop Space

Dragomir, George 10 1900 (has links)
Abstract Not Provided. / Thesis / Master of Science (MSc)
2

Planar CAT(k) Subspaces

Ricks, Russell M. 10 March 2010 (has links) (PDF)
Let M_k^2 be the complete, simply connected, Riemannian 2-manifold of constant curvature k ± 0. Let E be a closed, simply connected subspace of M_k^2 with the property that every two points in E are connected by a rectifi able path in E. We show that E is CAT(k) under the induced path metric.
3

Algorithme des complexes CAT (0) planaires et rectangulaires

Maftuleac, Daniela 28 June 2012 (has links)
Dans cette thèse, nous étudions des problèmes algorithmiques dans les complexes CAT(0) planaires et rectangulaires munis d'une m ́etrique intrinsèque l_2. Nous proposons des algorithmes de calcul du plus court chemin dans les complexes CAT(0) planaires et rectangulaires et de construction de l'enveloppe convexe d'un ensemble fini de points dans les complexes CAT(0) planaires. E ́tant donné un complexe CAT(0) rectangulaire 2-dimensionnel K à n sommets, nous proposons un algorithme qui, pour toute paire de points calcule la distance et le plus court chemin en temps sous-lin ́eaire en nombre de sommets de K, en utilisant une structure de données de taille O(n^2). Le deuxième problème étudié est celui du plus court chemin entre un point-source donné et tout autre point dans un complexe CAT(0) planaire K a n sommets. Pour cela, nous proposons un algorithme qui, pour tout point y de K, étant donnée le point source x et la carte géodésique SPM(x), construit le plus court chemin γ(x,y) en temps O(n), en utilisant une structure de données de taille O(n^2). Enfin, nous nous intéressons au calcul de l'enveloppe convexe d'un ensemble de k points dans un complexe CAT(0) planaire à n sommets. Nous proposons un algorithme qui construit l'enveloppe convexe en temps O(n^2 + nk log k) en utilisant une structure de données de taille O(n^2 + k). / In this thesis, we study algorithmic problems in CAT(0) planar and rectangular complexes with an intrinsic l_2−metric. We present algorithms for some algorithmic problems, such as computing the shortest path and the convex hull of a finite set of points in CAT(0) planar and rectangular complexes. We present an efficient algorithm for answering two-point distance queries in a given CAT(0) rectangular complex K with n vertices. Namely, we show that for a CAT(0) rectangular complex K with n vertices, one can construct a data structure of size O(n^2) so that, given any two points in K, the shortest path can be computed in subliniar time of n. The second problem presented is computing shortest path from a single-source to the query point in a CAT(0) planar complex. We propose an algorithm which computes in O(n) time the shortest path between a given point and the query point in a CAT(0) planar complex with n vertices, using a given shortest path map and data structure of size O(n^2). Finally, we study the problem of computing the convex hull of a set of k points in a CAT(0) planar complex with n vertices. We describe an algorithm which computes the convex hull in O(n^2 + nk log k) time, using a data structure of size O(n^2 + k).
4

The existence of metrics of nonpositive curvature on the Brady-Krammer complexes for finite-type Artin groups

Choi, Woonjung 29 August 2005 (has links)
My dissertation focuses on the existence of metrics of non-positive curvature for the simplicial complexes constructed recently by Tom Brady and Daan Krammer for the braid groups and other Artin groups of finite type. In particular, for each Artin group of finite type, there is a recently constructed finite simplicial Eilenberg-Mac Lane space known as its Brady-Krammer complex. The Brady-Krammer complexes are highly symmetric objects. Prior work on the relationship between the Brady-Krammer complexes and the theory of CAT(0)spaces has produced some positive results in low-dimensions. More specifically, the Brady-Krammer complexes of dimension at most 3 have been shown to support piecewise Euclidean metrics of non-positive curvature. Similarly, the 4dimensional Brady-Krammer complexes of type A4 and type B4 also support such metrics. In every instance, the metrics assigned respect all of the symmetries alluded to above. The main results of my dissertation show that this pattern does not extend to the Brady-Krammer complexes of type F4 and D4. These are the first negative results known about the curvature of these Brady-Krammer complexes. The proofs of my main theorems involve a combination of combinatorial results and computer calculations. These negative results are particularly striking since Ruth Charney, John Meier and Kim Whittlesey have shown that a particular complex closely related to each Brady-Krammer complex admits an asymmetric metric satisfying a weak version of non-positive curvature. Thus, one corollary of my results is that the weak asymmetric version of a CAT(0) metric (initially defined by Mladen Bestvina) is strictly weaker than the traditional version.
5

The existence of metrics of nonpositive curvature on the Brady-Krammer complexes for finite-type Artin groups

Choi, Woonjung 29 August 2005 (has links)
My dissertation focuses on the existence of metrics of non-positive curvature for the simplicial complexes constructed recently by Tom Brady and Daan Krammer for the braid groups and other Artin groups of finite type. In particular, for each Artin group of finite type, there is a recently constructed finite simplicial Eilenberg-Mac Lane space known as its Brady-Krammer complex. The Brady-Krammer complexes are highly symmetric objects. Prior work on the relationship between the Brady-Krammer complexes and the theory of CAT(0)spaces has produced some positive results in low-dimensions. More specifically, the Brady-Krammer complexes of dimension at most 3 have been shown to support piecewise Euclidean metrics of non-positive curvature. Similarly, the 4dimensional Brady-Krammer complexes of type A4 and type B4 also support such metrics. In every instance, the metrics assigned respect all of the symmetries alluded to above. The main results of my dissertation show that this pattern does not extend to the Brady-Krammer complexes of type F4 and D4. These are the first negative results known about the curvature of these Brady-Krammer complexes. The proofs of my main theorems involve a combination of combinatorial results and computer calculations. These negative results are particularly striking since Ruth Charney, John Meier and Kim Whittlesey have shown that a particular complex closely related to each Brady-Krammer complex admits an asymmetric metric satisfying a weak version of non-positive curvature. Thus, one corollary of my results is that the weak asymmetric version of a CAT(0) metric (initially defined by Mladen Bestvina) is strictly weaker than the traditional version.
6

Produtos torcidos e variedades conformemente planas / Warped products and conformally flat manifolds.

Bonfim, Paula Gonçalves Correia 25 February 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T14:04:40Z No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T14:10:40Z (GMT) No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-15T14:10:40Z (GMT). No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we propose to present concepts and results that guide us to construction of examples of complete locally conformally flat manifolds of nonpositive curvature obtained by Brozos-Vázquez, García-Río e Vázquez-Lorenzo in [4]. For this, was made a study of product manifolds equipped with a multiply warped metric. / Neste trabalho nos propomos a apresentar conceitos e resultados que nos guiem para a construção de exemplos de variedades completas localmente conformemente planas de curvatura seccional não positiva, obtidos por Brozos-Vázquez, García-Río e Vázquez- Lorenzo em [4]. Para isso, foi feito um estudo sobre variedades produto equipadas com uma métrica torcida múltipla.

Page generated in 0.0623 seconds